三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性

贾海林 翟汝鹏 李第辉 项海军 杨永钦

贾海林, 翟汝鹏, 李第辉, 项海军, 杨永钦. 三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性[J]. 爆炸与冲击, 2020, 40(8): 082201. doi: 10.11883/bzycj-2019-0456
引用本文: 贾海林, 翟汝鹏, 李第辉, 项海军, 杨永钦. 三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性[J]. 爆炸与冲击, 2020, 40(8): 082201. doi: 10.11883/bzycj-2019-0456
JIA Hailin, ZHAI Rupeng, LI Dihui, XIANG Haijun, YANG Yongqin. Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts[J]. Explosion And Shock Waves, 2020, 40(8): 082201. doi: 10.11883/bzycj-2019-0456
Citation: JIA Hailin, ZHAI Rupeng, LI Dihui, XIANG Haijun, YANG Yongqin. Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts[J]. Explosion And Shock Waves, 2020, 40(8): 082201. doi: 10.11883/bzycj-2019-0456

三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性

doi: 10.11883/bzycj-2019-0456
基金项目: 国家重点研发计划(2018YFC0807900);国家自然科学基金(51304069);教育部创新团队发展支持计划(IRT_16R22)
详细信息
    作者简介:

    贾海林(1980- ),男,博士,副教授,jiahailin@126.com

    通讯作者:

    杨永钦(1964- ),男,硕士,高级工程师,xfzdyyq@163.com

  • 中图分类号: O383

Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts

  • 摘要: 针对管道输送可燃气体时爆炸引发的连锁安全问题,自行搭建了两节管道预混气爆炸传播及抑爆实验系统,开展了不同种类、不同盐类质量分数和不同雾通量的盐类超细水雾抑制甲烷体积分数为9.5%的甲烷-空气预混气爆炸的系列实验。基于火灾学和爆炸学理论,深入探讨了不同实验工况下爆炸超压振荡曲线、最大超压峰值、爆炸火焰阵面位置、火焰平均传播速度和火焰结构演化的差异性。研究表明:随着盐类添加剂(NaCl、NaHCO3和MgCl2)质量分数和雾通量的增大,最大爆炸超压峰值相对于纯水超细水雾作用时呈不同幅度下降,爆炸超压振荡曲线上升趋势缓慢,火焰平均传播速度下降趋势明显。爆炸火焰锋面在管道B内呈现不同次数的后退现象,到达管道末端的时间较无细水雾和纯水超细水雾下延迟效应明显。通过比较分析,发现含NaCl超细水雾在弱化爆炸超压、延缓火焰锋面推进、降低火焰平均传播速度以及火焰后退次数方面均优于含MgCl2和NaHCO3超细水雾。主要原因在于,阴离子Cl销毁链式爆炸反应中OH·、H·自由基的能力强于${\rm{HCO}}_3^- $,阳离子Na+销毁爆炸反应中OH·、H·自由基的能力强于Mg2+
  • 图  1  两节管道预混气爆炸及抑爆实验系统

    Figure  1.  Experimental system for the premixed gas explosion and explosion suppression in a two-section pipeline

    图  2  超声雾化产生的细水雾粒径分布

    Figure  2.  Particle diameter distribution of water mist generated by ultrasonic atomization

    图  3  NaCl超细水雾对甲烷体积分数为9.5%的甲烷-空气预混气的爆炸超压振荡曲线及最大超压峰值的影响

    Figure  3.  Explosion overpressure-time curves and the maximum explosion overpressures affected by water mists containing NaCl for premixed methane-air mixture with the methane volume fraction of 9.5%

    图  4  MgCl2超细水雾对甲烷体积分数为9.5%的甲烷-空气预混气的爆炸超压振荡曲线及最大超压峰值的影响

    Figure  4.  Explosion overpressure-time curves and the maximum explosion overpressures affected by water mists containing MgCl2 for premixed methane-air mixture with the methane volume fraction of 9.5%

    图  5  NaHCO3超细水雾对甲烷体积分数为9.5%的甲烷-空气预混气的爆炸超压振荡曲线及最大超压峰值的影响

    Figure  5.  Explosion overpressure-time curves and the maximum explosion overpressures affected by water mists containing NaHCO3 for premixed methane-air mixture with the methane volume fraction of 9.5%

    图  6  雾通量均为8.4 mL、盐类质量分数不同的不同盐类超细水雾作用下爆炸超压变化的差异性

    Figure  6.  Differences of the explosion overpressures affected by ultrafine water mists with three different salts and different salt mass fractions under the same mist flux

    图  7  不同盐类超细水雾作用下管道B内爆炸火焰锋面位置的变化

    Figure  7.  Changes of explosive flame front positions in pipe Baffected by different ultrafine water mists

    图  8  不同盐类超细水雾作用下管道B内爆炸火焰平均传播速度的变化

    Figure  8.  Changes of average propagation velocities of explosion flames in pipe B affected by different ultrafine water mists

    图  9  雾通量均为8.4 mL、盐类质量分数均为8%的不同超细水雾作用下管道B内的火焰结构

    Figure  9.  Evolution of flame structures in pipe B affected by ultrafine water mists containing different salts with the same mist flux of 8.4 ml and the same salt mass fraction of 8%

    图  10  三种盐类超细水雾抑爆机理

    Figure  10.  Explosion suppression mechanism by three ultrafine water mists with different salts

    表  1  NaCl超细水雾作用下最大爆炸超压的变化

    Table  1.   Changes of the maximum explosion overpressures under the suppression of ultrafine water mists containing NaCl

    w/%V/mLpmax/kPaΔpmax/kPaη/%w/%V/mLpmax/kPaΔpmax/kPaη/%
    04.218.708.415.4
    217.01.7 9.1213.61.811.7
    415.23.518.7412.82.616.9
    614.54.222.5610.84.629.9
    813.94.825.78 9.95.535.7
    下载: 导出CSV

    表  2  含NaHCO3超细水雾作用下最大爆炸超压的变化

    Table  2.   Changes of the maximum explosion overpressure under the suppression of ultrafine water mists containing NaHCO3

    w/%V/mLpmax/kPaΔpmax/kPaη/%w/%VL/mLpmax/kPaΔpmax/kPaη/%
    04.218.708.415.4
    218.60.1 0.5215.00.4 2.5
    418.30.4 2.1414.31.1 7.1
    617.71.0 5.3613.51.912.3
    816.62.111.2812.82.616.9
    下载: 导出CSV

    表  3  MgCl2超细水雾作用下最大爆炸超压的变化

    Table  3.   Changes of the maximum explosion overpressures under the suppression of ultrafine water mists containing MgCl2

    w/%V/mLpmax/kPaΔpmax/kPaη/%w/%V/mLpmax/kPaΔpmax/kPaη/%
    04.218.708.415.4
    217.31.4 7.5215.30.1 0.6
    416.12.413.9414.50.9 5.8
    615.73.016.0613.02.415.6
    814.04.725.1811.73.724.0
    下载: 导出CSV

    表  4  不同工况下3种盐类超细水雾作用下火焰峰面到达管道末端的时间

    Table  4.   Times for the flame front to arrive at the terminal end of pipe B affected by three ultrafine water mists with different salts under different working conditions

    工况tter/msΔt/msξ/%工况tter/msΔt/msξ/%工况tter/msΔt/msξ/%
    无水雾 5.27无水雾 5.27无水雾 5.27
    0%-NaCl 8.06 2.790%-MgCl2 8.062.790%-NaHCO3 8.062.79
    2%-NaCl11.16 5.89 38.52%-MgCl2 8.683.41 7.72%-NaHCO3 8.683.41 7.7
    4%-NaCl12.09 6.82 50.04%-MgCl212.407.1353.84%-NaHCO3 9.304.0315.4
    6%-NaCl14.88 9.61 84.66%-MgCl213.648.3769.26%-NaHCO310.234.9626.9
    8%-NaCl17.9812.71123.08%-MgCl215.199.9288.58%-NaHCO312.407.1353.8
    下载: 导出CSV
  • [1] 毛宗强. 氢能: 我国未来的清洁能源 [J]. 化工学报, 2004, 55(S1): 296–302.

    MAO Z Q. Hydrogen: a future clean energy carrier in China [J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 296–302.
    [2] RAZUS D, MOVILEANU C, BRINZEA V, et al. Explosion pressures of hydrocarbon-air mixtures in closed vessels [J]. Journal of Hazardous Materials, 2006, 135(1−3): 58–65. DOI: 10.1016/j.jhazmat.2005.10.061.
    [3] KURDYUMOV V N, MATALON M. Flame acceleration in long narrow open channels [J]. Proceedings of the Combustion Institute, 2013, 34(1): 865–872. DOI: 10.1016/j.proci.2012.07.045.
    [4] WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. DOI: 10.1016/j.jlp.2016.05.021.
    [5] 罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.

    LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
    [6] 陈鹏, 李艳超, 黄福军, 等. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟 [J]. 爆炸与冲击, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.

    CHEN P, LI Y C, HUANG F J, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle [J]. Explosion and Shock Waves, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.
    [7] 周宁, 王文秀, 张国文, 等. 障碍物对丙烷-空气爆炸火焰加速的影响 [J]. 爆炸与冲击, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0109.

    ZHOU N, WANG W X, ZHANG G W, et al. Effect of obstacles on flame acceleration of propane-air explosion [J]. Explosion and Shock Waves, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0109.
    [8] ZHANG P P, ZHOU Y H, CAO X Y, et al. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog [J]. Safety Science, 2014, 62: 1–7. DOI: 10.1016/j.ssci.2013.07.027.
    [9] ADIGA K C, HATCHER JR R F, SHEINSON R S, et al. A computational and experimental study of ultra fine water mist as a total flooding agent [J]. Fire Safety Journal, 2007, 42(2): 150–160. DOI: 10.1016/j.firesaf.2006.08.010.
    [10] PEI B, YU M G, CHEN L W, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 546–553. DOI: 10.1016/j.jlp.2016.02.005.
    [11] XU H L, LI Y, ZHU P, et al. Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 815–820. DOI: 10.1016/j.jlp.2013.02.014.
    [12] ZHU C J, LIN B Q, JIANG B Y, et al. Numerical simulation of blast wave oscillation effects on a premixed methane/air explosion in closed-end ducts [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 851–861. DOI: 10.1016/j.jlp.2013.02.013.
    [13] ZHOU Y H, BI M S, QI F. Experimental research into effects of obstacle on methane-coal dust hybrid explosion [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(1): 127–130. DOI: 10.1016/j.jlp.2011.07.003.
    [14] BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: Part 2: mitigation of vented deflagrations [J]. International Journal of Hydrogen Energ, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029.
    [15] 裴蓓, 韦双明, 陈立伟, 等. CO2-超细水雾对CH4/air初期爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.

    PEI B, WEI S M, CHEN L W, et al. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/air [J]. Explosion and Shock Waves, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.
    [16] 纪虹, 杨克, 黄维秋, 等. 超细水雾协同甲烷氧化菌降解与抑制甲烷爆炸的实验研究 [J]. 化工学报, 2017, 68(11): 4461–4468. DOI: 10.11949/j.issn.0438-1157.20170568.

    JI H, YANG K, HUANG W Q, et al. Methane degradation and explosion inhibition by using ultrafine water mist containing methane oxidative bacteria-inorganic salt [J]. CIESC Journal, 2017, 68(11): 4461–4468. DOI: 10.11949/j.issn.0438-1157.20170568.
    [17] GU R, WANG X S, XU H L. Experimental study on suppression of methane explosion with ultra-fine water mist [J]. Fire Safety Science, 2010, 19(2): 51–59. DOI: 10.3969/j.issn.1004-5309.2010.02.001.
    [18] MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames [J]. Combustion and Flame, 2006, 144(1−2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003.
    [19] 杨克, 纪虹, 邢志祥, 等. 含草酸钾的超细水雾抑制甲烷爆炸的特性 [J]. 化工学报, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.

    YANG K, JI H, XING Z X, et al. Characteristics on methane explosion suppression by ultrafine water mist containing potassium oxalate [J]. CIESC Journal, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.
    [20] JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58: 221–225. DOI: 10.1016/j.firesaf.2013.03.003.
    [21] 余明高, 安安, 赵万里, 等. 含添加剂细水雾抑制瓦斯爆炸有效性试验研究 [J]. 安全与环境学报, 2011, 11(4): 149–153. DOI: 10.3969/j.issn.1009-6094.2011.04.034.

    YU M G, AN A, ZHAO W L, et al. On the inhibiting effectiveness of the water mist with additives to the gas explosion [J]. Journal of Safety and Environment, 2011, 11(4): 149–153. DOI: 10.3969/j.issn.1009-6094.2011.04.034.
    [22] 余明高, 杨勇, 裴蓓, 等. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.

    YU M G, YANG Y, PEI B, et al. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.
    [23] GAN B, LI B, JIANG H P, et al. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives [J]. Journal of Hazardous Materials, 2018, 351: 346–355. DOI: 10.1016/j.jhazmat.2018.03.017.
    [24] 陈晓坤, 林滢, 罗振敏, 等. 水系抑制剂控制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2006, 31(5): 603–606. DOI: 10.3321/j.issn:0253-9993.2006.05.012.

    CHEN X K, LIN Y, LUO Z M, et al. Experiment study on controlling gas explosion by water-depressant [J]. Journal of China Coal Society, 2006, 31(5): 603–606. DOI: 10.3321/j.issn:0253-9993.2006.05.012.
    [25] CAO X Y, REN J J, BI M S, et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist [J]. Journal of Hazardous Materials, 2017, 324: 489–497. DOI: 10.1016/j.jhazmat.2016.11.017.
    [26] CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
    [27] CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/j.jlp.2016.06.012.
    [28] NFPA. NFPA 750 Standard for the installation of water mist fire protection systems [S]. Quincy, MA: National Fire Protection Association, 2000.
    [29] 秦俊, 廖光煊, 王喜世, 等. 细水雾抑制火旋风的实验研究 [J]. 自然灾害学报, 2002, 11: 60–65. DOI: 10.3969/j.issn.1004-4574.2002.04.010.

    QIN J, LIAO G X, WANG X S, et al. Experimental study on extinguishment of fire whirlwind by water mist [J]. Journal of Natural Disasters, 2002, 11: 60–65. DOI: 10.3969/j.issn.1004-4574.2002.04.010.
    [30] AKIRA Y, TOICHIRO O, WATARU E, et al. Experimental and numerical investigation of flame speed retardation by water mist [J]. Combustion and Flame, 2015, 162: 1772–1777. DOI: 10.1016/j.combustflame.2014.11.038.
    [31] 邓军, 田志辉, 罗振敏, 等. Mg(OH)2/CO2抑爆瓦斯实验研究 [J]. 煤矿安全, 2013, 44: 4–6. DOI: 10.13347/j.cnki.mkaq.2013.10.014.

    DENG J, TIAN Z H, LUO Z M, et al. Experimental research on suppressing gas explosion by Mg(OH)2/CO2 [J]. Safety in Coal Mines, 2013, 44: 4–6. DOI: 10.13347/j.cnki.mkaq.2013.10.014.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  3528
  • HTML全文浏览量:  1300
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-13
  • 修回日期:  2020-05-26
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回