弹道枪不同水深下全淹没式发射膛口流场的数值分析

张京辉 余永刚

张京辉, 余永刚. 弹道枪不同水深下全淹没式发射膛口流场的数值分析[J]. 爆炸与冲击, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478
引用本文: 张京辉, 余永刚. 弹道枪不同水深下全淹没式发射膛口流场的数值分析[J]. 爆炸与冲击, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478
ZHANG Jinghui, YU Yonggang. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths[J]. Explosion And Shock Waves, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478
Citation: ZHANG Jinghui, YU Yonggang. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths[J]. Explosion And Shock Waves, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478

弹道枪不同水深下全淹没式发射膛口流场的数值分析

doi: 10.11883/bzycj-2019-0478
基金项目: 国家自然科学基金(11372139)
详细信息
    作者简介:

    张京辉(1995- ),男,博士研究生,zjhsg@vip.qq.com

    通讯作者:

    余永刚(1963- ),男,博士,教授,博士生导师,yygnjust801@163.com

  • 中图分类号: O354.5; TJ6

Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths

  • 摘要: 为了解弹道枪水下全淹没发射时,水深对膛口流场演化特性的影响,建立了二维轴对称非稳态膛口流场模型。采用流体体积函数多相流模型、标准k-ε湍流模型和Schnerr-Sauer空化模型,结合动网格及用户自定义函数技术,对水下全淹没发射膛口流场演变全过程进行了数值模拟。搭建了弹道枪水下可视化射击实验平台,对12.7 mm口径弹道枪在水中全淹没式发射时膛口流场演化过程进行了观测,并验证了数值模型的合理性。在此基础上,对比了不同水深下(h=1~100 m)膛口流场的演化特性。通过对比发现:在不同水深条件下,在膛口流场影响范围内,弹丸膛外行程随时间的变化均满足指数函数规律;水越深,膛口流场典型波系结构形成所需时间越长,且燃气在膛口轴向马赫盘处的温度和压力峰值越低,压力振荡幅度也越小,更快趋于平稳,但在径向上,水越深,压力振荡持续时间越长。
  • 图  1  计算域及边界条件

    Figure  1.  Calculation domain and boundary conditions

    图  2  不同网格数下膛口中心速度沿轴向的变化(t=1 ms)

    Figure  2.  Velocity of the muzzle center varying along the axial direction for different grid quantities at t=1 ms

    图  3  实验装置示意图

    Figure  3.  Schematic diagram of the experimental device

    图  4  实验照片阴影图与模拟相图对比情况

    Figure  4.  Comparison of experimental shadow photos and simulated phase diagrams

    图  5  射流轴向、径向最大位移对比

    Figure  5.  Comparison of the maximum axial and radial displacements of the jet flow between experimental and simulated results

    图  6  不同水深下弹丸膛外行程

    Figure  6.  Displacement-time curves of the projectile at different water depths

    图  7  空气中发射时典型膛口流场流谱示意图

    Figure  7.  Schematic diagram of the typical muzzle flow field during air launch

    图  8  全淹没发射时膛口流场流谱示意图

    Figure  8.  Schematic diagram of the muzzle flow field during submerged launch

    图  9  h=1 m时膛口中心剖面马赫数云图与等值线图

    Figure  9.  Mach number cloud map and contour map at h=1 m

    图  10  h=50 m时膛口中心剖面马赫数云图和等值线图

    Figure  10.  Mach number cloud map and contour map at h=50 m

    图  11  h=100 m时膛口中心剖面马赫数云图和等值线图

    Figure  11.  Mach number cloud map and contour map at h=100 m

    图  12  h=50 m是膛口中心剖面压力云图

    Figure  12.  Pressure cloud map of the muzzle center section at h=50 m

    图  13  膛口压力分布曲线

    Figure  13.  Pressure distribution curves of muzzle

    表  1  膛口初始参数

    Table  1.   Initial parameters for the muzzle

    h/ml/mv0/(m·s−1)pk0/MPa
    1123014.5
    50122015.5
    100120720.5
    下载: 导出CSV

    表  2  拟合参数

    Table  2.   Fitting parameters

    h/mx0/mx1/mt1/ms
    11.091.094.55
    500.840.843.55
    1000.790.793.42
    下载: 导出CSV
  • [1] 李鸿志, 姜孝海, 王杨, 等. 中间弹道学[M]. 北京: 北京理工大学出版社, 2015: 10.
    [2] 姜孝海, 范宝春, 李鸿志. 膛口流场动力学过程数值研究 [J]. 应用数学和力学, 2008, 29(3): 316–324. DOI: 10.3879/j.issn.1000-0887.2008.03.006.

    JIANG X H, FAN B C, LI H Z. Numerical investigations on the dynamic process of the muzzle flow [J]. Applied Mathematics and Mechanics, 2008, 29(3): 316–324. DOI: 10.3879/j.issn.1000-0887.2008.03.006.
    [3] 吴伟, 许厚谦, 王亮, 等. 含化学反应膛口流场的无网格数值模拟 [J]. 爆炸与冲击, 2015, 35(5): 625–632. DOI: 10.11883/1001-1455(2015)05-0625-08.

    WU W, XU H Q, WANG L, et al. Numerical simulation of a muzzle flow field involving chemical reactions based on gridless method [J]. Explosion and Shock Waves, 2015, 35(5): 625–632. DOI: 10.11883/1001-1455(2015)05-0625-08.
    [4] 陈川琳, 黄陈磊, 许辉, 等. 小口径步枪弹头后效期运动特性试验与数值研究 [J]. 兵工学报, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.

    CHEN C L, HUANG C L, XU H, et al. Experimental and numerical research on motion characteristics of a small caliber bullet in muzzle flows [J]. Acta Armamentarii, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.
    [5] 张欣尉, 余永刚. 水下发射对机枪膛口温度场影响的数值分析 [J]. 含能材料, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.

    ZHANG X W, YU Y G. Numerical analysis for the effect of underwater launch on the temperature field of machine gun muzzle [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.
    [6] 张欣尉, 余永刚, 莽珊珊. 装药参数对水下机枪密封式膛口流场影响的数值分析 [J]. 兵工学报, 2018, 39(1): 18–27. DOI: 10.3969/j.issn.1000-1093.2018.01.002.

    ZHANG X W, YU Y G, MANG S S. Numerical analysis of influence of charge parameters on flow field around sealed muzzle of underwater machine gun [J]. Acta Armamentarii, 2018, 39(1): 18–27. DOI: 10.3969/j.issn.1000-1093.2018.01.002.
    [7] HU Z T, YU Y G. Expansion characteristics of multiple wall jets in cylindrical observation chamber [J]. Applied Thermal Engineering, 2017, 113: 1396–1409. DOI: 10.1016/j.applthermaleng.2016.11.140.
    [8] ZHAO J J, YU Y G. Flow structure of conical distributed multiple gas jets injected into a water chamber [J]. Journal of Mechanical Science and Technology, 2017, 31(4): 1683–1691. DOI: 10.1007/s12206-017-0316-9.
    [9] ZHOU L L, YU Y G. Study on interaction characteristics between multi gas jets and water during the underwater launching process [J]. Experimental Thermal and Fluid Science, 2017, 83: 200–206. DOI: 10.1016/j.expthermflusci.2017.01.007.
    [10] 郝宗睿, 王乐勤, 吴大转. 水下喷气推进高速射流场数值研究 [J]. 浙江大学学报(工学版), 2010, 44(2): 408–412. DOI: 10.3785/j.issn.1008-973X.2010.02.036.

    HAO Z R, WANG L Q, WU D Z. Numerical simulation of high-speed jet flow field of underwater jet propulsion craft [J]. Journal of Zhejiang University (Engineering Science), 2010, 44(2): 408–412. DOI: 10.3785/j.issn.1008-973X.2010.02.036.
    [11] 唐云龙, 李世鹏, 谢侃, 等. 有相变的水下超音速燃气射流数值模拟 [J]. 哈尔滨工程大学学报, 2016, 37(9): 1237–1243. DOI: 10.11990/jheu.201506010.

    TANG Y L, LI S P, XIE K, et al. Numerical simulation of underwater supersonic gas jets with phase transitions [J]. Journal of Harbin Engineering University, 2016, 37(9): 1237–1243. DOI: 10.11990/jheu.201506010.
    [12] 张焕好, 郭则庆, 王瑞琦, 等. 水下超声速气体射流的初始流动特性研究 [J]. 振动与冲击, 2019, 38(6): 88–93, 131. DOI: 10.13465/j.cnki.jvs.2019.06.013.

    ZHANG H H, GUO Z Q, WANG R Q, et al. Initial flow characteristics of an underwater supersonic gas jet [J]. Journal of Vibration and Shock, 2019, 38(6): 88–93, 131. DOI: 10.13465/j.cnki.jvs.2019.06.013.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  3287
  • HTML全文浏览量:  1248
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-25
  • 修回日期:  2020-03-02
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回