多孔障碍物对预混火焰传播的影响

程方明 常助川 史合 高彤彤 罗振敏 葛天姣

程方明, 常助川, 史合, 高彤彤, 罗振敏, 葛天姣. 多孔障碍物对预混火焰传播的影响[J]. 爆炸与冲击, 2020, 40(8): 082103. doi: 10.11883/bzycj-2019-0480
引用本文: 程方明, 常助川, 史合, 高彤彤, 罗振敏, 葛天姣. 多孔障碍物对预混火焰传播的影响[J]. 爆炸与冲击, 2020, 40(8): 082103. doi: 10.11883/bzycj-2019-0480
CHENG Fangming, CHANG Zhuchuan, SHI He, GAO Tongtong, LUO Zhenmin, GE Tianjiao. Multi-hole obstacles’ effects on premixed flame’s propagation[J]. Explosion And Shock Waves, 2020, 40(8): 082103. doi: 10.11883/bzycj-2019-0480
Citation: CHENG Fangming, CHANG Zhuchuan, SHI He, GAO Tongtong, LUO Zhenmin, GE Tianjiao. Multi-hole obstacles’ effects on premixed flame’s propagation[J]. Explosion And Shock Waves, 2020, 40(8): 082103. doi: 10.11883/bzycj-2019-0480

多孔障碍物对预混火焰传播的影响

doi: 10.11883/bzycj-2019-0480
基金项目: 国家重点研发计划(2016-YFC-0800100);国家自然科学基金(51674193,51504186)
详细信息
    作者简介:

    程方明(1982- ),男,博士,副教授,chengfm@xust.edu.cn

  • 中图分类号: O383

Multi-hole obstacles’ effects on premixed flame’s propagation

  • 摘要: 以甲烷为代表性气体,研究了半封闭管道中设置多孔障碍物对可燃气体爆炸火焰传播的影响,基于大涡模拟对实验进行了重现,对比了实验与模拟中火焰传播过程的形状、位置及速度,分析了模拟结果中火焰穿过障碍物前后的流场和表面积变化,给出了衡量火焰褶皱程度的指标及算法。结果表明:大涡模拟结果与实验结果有较好的一致性;火焰在存在障碍物的管道内传播,经历层流快速膨胀、受阻回流、湍流快速发展和脉动减速4个阶段,各阶段火焰依次分别呈现加速、减速、二次加速、二次减速的波动变化;当可燃气体在开口与点火位置同端的管道内爆炸,火焰在接近障碍物时,受管道封闭端和障碍物约束显著,而出现脉动回流现象;火焰穿过多孔障碍物后,传播速度骤升至峰值,较未穿过障碍物前的最大速度可增加58.7%;障碍物是导致火焰面破碎以及面积褶皱率增大的直接原因,火焰褶皱率最大可达44.8%,比未穿过障碍物前的最大褶皱率增大39.27%。
  • 图  1  实验系统及数值模拟网格

    Figure  1.  Experimental system and numerical simulation grid

    图  2  多孔障碍物管道内火焰传播的高速摄影图像

    Figure  2.  High-speed photographic images of flame propagation in a multi-hole obstacle pipe

    图  3  大涡模拟计算多孔障碍物管道内火焰结构时间序列

    Figure  3.  Sequence of three-dimensional flame structure by LES model in a multi-hole obstacle pipe

    图  4  火焰在第Ⅱ阶段回流时管道内流场变化结构

    Figure  4.  Flow field structure in the duct during the return of the flame in phase Ⅱ

    图  5  火焰位置时程曲线

    Figure  5.  Histories of flame front location

    图  6  火焰速度时程曲线

    Figure  6.  Histories of flame front surface velocity

    图  7  障碍物前后管内火焰面及流场变化

    Figure  7.  Changes of flame front and flow field before and after the obstacle

    图  8  单孔障碍物管道内LES模拟的火焰和温度场[22]

    Figure  8.  Flame and temperature fields simulated by LES in a single-hole obstacle pipe[22]

    图  9  火焰面积变化

    Figure  9.  Change of flame area

  • [1] LI G Q, DU Y, QI S, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 529–536. DOI: 10.1016/j.jlp.2016.07.022.
    [2] 杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.

    DU Y, LI G Q, WU S L, et al. Effects of a T-shaped branch pipe on overpressure of gasoline-air mixture explosion [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
    [3] JOHANSEN C, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 571–585. DOI: 10.1016/j.jlp.2012.12.005.
    [4] 王公忠, 张建华, 李登科, 等. 障碍物对预混火焰特性影响的大涡数值模拟 [J]. 爆炸与冲击, 2017, 37(1): 68–76. DOI: 10.11883/1001-1455(2017)01-0068-09.

    WANG G Z, ZHANG J H, LI D K, et al. Large eddy simulation of impacted obstacles’ effects on premixed flame’s characteristics [J]. Explosion and Shock Waves, 2017, 37(1): 68–76. DOI: 10.11883/1001-1455(2017)01-0068-09.
    [5] WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. DOI: 10.1016/j.jlp.2016.05.021.
    [6] MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000, 21(1−3): 109–116.
    [7] 杜扬, 李国庆, 王世茂, 等. 障碍物数量对油气泄压爆炸特性的影响 [J]. 化工学报, 2017, 68(7): 2946–2955.

    DU Y, LI G Q, WANG S M, et al. Effects of obstacle number on characteristics of vented gasoline-air mixture explosions [J]. CIESC Journal, 2017, 68(7): 2946–2955.
    [8] CICCARELLI G, FOWLER C J, BARDON M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube [J]. Shock Waves, 2005, 14(3): 161–166. DOI: 10.1007/s00193-005-0259-4.
    [9] 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [10] WAN S J, YU M G, ZHENG K, et al. Effect of side vent size on a methane/air explosion in an end-vented duct containing an obstacle [J]. Experimental Thermal and Fluid Science, 2019, 101: 141–150. DOI: 10.1016/j.expthermflusci.2018.10.004.
    [11] 孙明波, 汪洪波, 梁剑寒, 等. 复杂湍流流动的混合RANS/LES方法研究 [J]. 航空计算技术, 2011, 41(1): 24–29, 33. DOI: 10.3969/j.issn.1671-654X.2011.01.006.

    SUN M B, WANG H B, LIANG J H, et al. Evaluation of hybrid RANS/LES methodologies for complex turbulent flow simulations [J]. Aeronautical Computing Technique, 2011, 41(1): 24–29, 33. DOI: 10.3969/j.issn.1671-654X.2011.01.006.
    [12] WEN X P, DING H Q, SU T F, et al. Effects of obstacle angle on methane-air deflagration characteristics in a semi-confined chamber [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 210–216. DOI: 10.1016/j.jlp.2017.01.007.
    [13] WEN X P, YU M G, LIU Z C, et al. Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(4): 730–738. DOI: 10.1016/j.jlp.2012.04.008.
    [14] LI G Q, DU Y, WANG S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. Journal of Hazardous Materials, 2017, 339: 131–142. DOI: 10.1016/j.jhazmat.2017.06.018.
    [15] CHEN P, LI Y C, HUANG F J, et al. Experimental and LES investigation of premixed methane/air flame propagating in a chamber for three obstacle BR configurations [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 48–54. DOI: 10.1016/j.jlp.2016.02.020.
    [16] LESIEURM, MÉTAIS O, COMTE P. Large-eddy simulations of turbulence [M]. Cambridge: Cambridge University Press, 2005: 5−10.
    [17] AUNG K T, HASSAN M I, FAETH G M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure [J]. Combustion and Flame, 1997, 109(1/2): 1–24.
    [18] BUTLER T D, O'ROURKE P J. A numerical method for two-dimensional unsteady reacting flows [J]. Symposium (International) on Combustion, 1977, 16(1): 1503. DOI: 10.1016/S0082-0784(77)80432-3.
    [19] XIAO H H, SHEN X B, SUN J H. Experimental study and three-dimensional simulation of premixed hydrogen/air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2012, 37(15): 11466–11473. DOI: 10.1016/j.ijhydene.2012.05.006.
    [20] YU M G, ZHENG K, CHU T X. Gas explosion flame propagation over various hollow-square obstacles [J]. Journal of Natural Gas Science and Engineering, 2016, 30: 221–227. DOI: 10.1016/j.jngse.2016.02.009.
    [21] ZHENG K, YU M G, ZHENG L G, et al. Effects of hydrogen addition on methane-air deflagration in obstructed chamber [J]. Experimental Thermal and Fluid Science, 2017, 80: 270–280. DOI: 10.1016/j.expthermflusci.2016.08.025.
    [22] 陈鹏, 李艳超, 黄福军, 等. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟 [J]. 爆炸与冲击, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.

    CHEN P, LI Y C, HUANG F J, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square–hole obstacle [J]. Explosion and Shock Waves, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.
  • 加载中
图(9)
计量
  • 文章访问数:  3727
  • HTML全文浏览量:  1207
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-25
  • 修回日期:  2020-02-16
  • 网络出版日期:  2020-07-25
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回