负泊松比蜂窝材料抗爆炸特性及优化设计研究

孙晓旺 陶晓晓 王显会 李进军 王利辉

孙晓旺, 陶晓晓, 王显会, 李进军, 王利辉. 负泊松比蜂窝材料抗爆炸特性及优化设计研究[J]. 爆炸与冲击, 2020, 40(9): 095101. doi: 10.11883/bzycj-2020-0011
引用本文: 孙晓旺, 陶晓晓, 王显会, 李进军, 王利辉. 负泊松比蜂窝材料抗爆炸特性及优化设计研究[J]. 爆炸与冲击, 2020, 40(9): 095101. doi: 10.11883/bzycj-2020-0011
SUN Xiaowang, TAO Xiaoxiao, WANG Xianhui, LI Jinjun, WANG Lihui. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material[J]. Explosion And Shock Waves, 2020, 40(9): 095101. doi: 10.11883/bzycj-2020-0011
Citation: SUN Xiaowang, TAO Xiaoxiao, WANG Xianhui, LI Jinjun, WANG Lihui. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material[J]. Explosion And Shock Waves, 2020, 40(9): 095101. doi: 10.11883/bzycj-2020-0011

负泊松比蜂窝材料抗爆炸特性及优化设计研究

doi: 10.11883/bzycj-2020-0011
基金项目: 国家自然科学基金(11802140)
详细信息
    作者简介:

    孙晓旺(1987- ),男,博士,讲师,xwsun@njust.edu.cn

    通讯作者:

    王显会(1968- ),男,博士,教授,13770669850@139.com

  • 中图分类号: O389

Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material

  • 摘要: 为了深入研究车辆底部防护组件爆炸冲击下的结构响应,提高防护型车辆的抗爆炸冲击性能,建立了某车辆底部防护组件在爆炸冲击下的有限元模型,并进行爆炸冲击台架试验验证了有限元模拟的可靠性;将内凹六边形负泊松比蜂窝材料作为防护组件的夹芯部分,分析负泊松比蜂窝材料在爆炸冲击下的变形模式,并对比了同等质量的其他3种防护组件的抗爆炸冲击性能。结果表明,含有负泊松比蜂窝夹芯的防护组件具有更优的抗爆性能。建立了以内凹六边形负泊松比蜂窝胞元尺寸参数为设计变量的多目标优化问题的数学模型,采用多目标遗传算法获得胞元几何参数的最优方案,有效降低了防护组件基板的最大挠度和最大动能。
  • 图  1  负泊松比材料受载变形示意图

    Figure  1.  Schematic deformation of negative Poisson’s ratio material under load

    图  2  爆炸冲击台架有限元模型

    Figure  2.  A finite element model for the explosive impact bench

    图  3  防护组件示意图

    Figure  3.  Schematic diagram of protection component

    图  4  基板挠度云图

    Figure  4.  Cloud diagram of substrate deflection

    图  5  爆炸冲击试验台架

    Figure  5.  Explosive impact test bench

    图  6  应变梳布置

    Figure  6.  Strain comb arrangement

    图  7  试验后应变梳

    Figure  7.  Strain comb after test

    图  8  负泊松比蜂窝夹芯防护组件

    Figure  8.  Negative Poisson’s ratio honeycomb sandwich protection component

    图  9  负泊松比蜂窝夹芯材料局部结构

    Figure  9.  Local structure of honeycomb sandwich material with negative Poisson’s ratio

    图  10  胞元几何参数示意图

    Figure  10.  Schematic diagram of cell geometric parameters

    图  11  爆炸冲击下负泊松比蜂窝防护组件典型变形模式

    Figure  11.  Typical deformation mode of Poisson’s ratio honeycomb protection component under explosion impact

    图  12  负泊松比蜂窝芯层中心变形图

    Figure  12.  Deformation diagram of negative Poisson’s ratio honeycomb core center

    图  13  防护组件各部分结构动能时程曲线

    Figure  13.  Time history curve of the kinetic energy of each part of the protective component

    图  14  防护组件各部分结构内能时程曲线

    Figure  14.  Time history curve of the internal energy of each part of the protective components

    图  15  两种防护组件基板中心挠度时程曲线

    Figure  15.  Time history curve of the center deflection of the two kinds of protective component’s substrates

    图  16  两种防护组件基板动能时程曲线

    Figure  16.  Time history curve of the kinetic energy of the two kinds of protective component’s substrates

    图  17  正六边形蜂窝芯层部分结构

    Figure  17.  Partial structure of regular hexagonal honeycomb core layer

    图  18  正六边形蜂窝胞元结构示意图

    Figure  18.  Schematic diagram of a regular hexagonal honeycomb cell structure

    图  19  4种防护组件基板中心挠度时程曲线

    Figure  19.  Time history curves of center deflection of four kinds of protective component’s substrates

    图  20  4种防护组件基板动能时程曲线

    Figure  20.  Time history curves of kinetic energy of four kinds of protective component’s substrates

    图  21  帕累托前沿

    Figure  21.  Pareto front

    图  22  优化前后基板挠度时程曲线

    Figure  22.  Time history curves of substrate deflection before and after optimization

    图  23  优化前后基板动能时程曲线

    Figure  23.  Time history curves of substrate kinetic energy before and after optimization

    表  1  防护组件各部分材料参数

    Table  1.   Material parameters for each part of the protective component

    材料密度ρ/(kg·m−3)杨氏模量E/GPa屈服强度σy/MPa泊松比µ抗拉强度σt/MPa
    np500钢7.8 × 10321013820.31757
    960E钢7.8 × 103210 9860.31150
    KS700钢7.8 × 103210 7000.3 752
    下载: 导出CSV

    表  2  防护组件的结构响应与能量

    Table  2.   Structural response and energy of protective component

    结构最大挠度d/mm最大加速度a/g最大动能$ {E}_{\rm k} $/kJ最大内能$ {E}_{\rm i} $/kJ
    面板132.821018.15123.2869.39
    背板 89.38 470.87 16.3531.72
    基板 91.68 448.52 16.8135.14
    下载: 导出CSV

    表  3  H14铝材料参数

    Table  3.   H14 aluminum material parameters

    材料密度ρ/(kg·m−3)杨氏模量E/GPa屈服强度度σy/MPa泊松比µ抗拉强度σt/MPa
    H14铝2.7×103701880.3271
    下载: 导出CSV

    表  4  防护组件的结构响应与能量

    Table  4.   Structural response and energy of protective components

    结构最大挠度d/mm最大加速度a/g最大动能Ek/kJ最大内能Ei/kJ比吸能η/(kJ·kg−1)
    面板130.4 1821.8048.2520.7310.095
    夹芯层 208.39 2.9046.69 3.107
    背板78.35 350.67 7.9810.99 0.063
    基板77.96 340.56 8.0411.48 0.078
    下载: 导出CSV

    表  5  基于D-optimal采样的试验设计及结果

    Table  5.   Experimental design and results based on D-optimal sampling

    序号$ {L}_{1} $/mm$ {L}_{2} $/mm$ {t}_{\rm c} $/mm$ \theta $/(°)M/kgd/mm$ {E}_{\rm k} $/kJ
    121.1516.970.345518.6177.668.10
    222.9516.280.316013.0076.767.78
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    2721.3316.560.305016.8178.838.59
    2823.1315.870.345514.7577.768.16
    下载: 导出CSV

    表  6  目标响应的决定系数

    Table  6.   Decision coefficients of target response

    $ M $$ {F}_{\rm d}\left(x\right) $$ {F}_{\rm E}\left(x\right) $
    $ {R}^{2} $0.9630.9870.959
    下载: 导出CSV

    表  7  第50代Pareto解集(部分)及变量参数

    Table  7.   The 50th generation Pareto solution set (part) and variable parameters

    解集序号L1/mmL2/mm$ {t}_{\rm c} $/mm$ \theta $/(°)M/kgd/mm$ {E}_{\rm k} $/kJ
    124.3515.780.336012.4174.567.99
    222.3615.780.325012.4776.647.84
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    15524.4415.790.315512.5375.837.70
    15620.4318.110.325018.1876.236.52
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    85721.2717.850.326017.8976.166.96
    85820.7817.440.345016.2376.176.99
    下载: 导出CSV
  • [1] 李补莲, 原树兴. 现代军用车辆的防护措施 [J]. 国外坦克, 2011(5): 41–43. DOI: CNKI:SUN:GWTK.0.2011-05-019.

    LI B L, YUAN S X. Protective measures of modern military vehicles [J]. Foreign Tanks, 2011(5): 41–43. DOI: CNKI:SUN:GWTK.0.2011-05-019.
    [2] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [3] LI X, ZHANG P, WANG Z, et al. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis [J]. Composite Structures, 2014, 108: 1001–1008. DOI: 10.1016/j.compstruct.2013.10.034.
    [4] 周冠. 新型负泊松比结构关键技术研究及其在车身设计中的应用[D]. 长沙: 湖南大学, 2015: 6−7.
    [5] QIAO J, CHEN C Q. Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs [J]. Journal of Applied Mechanics, 2015, 82(5): 051007. DOI: 10.1115/1.4030007.
    [6] ZHOU G, MA Z D, GU J, et al. Design optimization of a NPR structure based on HAM optimization method [J]. Structural and Multidisciplinary Optimization, 2016, 53(3): 635–643. DOI: 10.1007/s00158-015-1341-x.
    [7] 杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 124–135. DOI: 10.11883/bjycj-2018-0060.

    YANG D Q, WU B H, ZHANG X W. Explosion and impact resistance of star negative Poisson’s ratio metamaterial protective structure [J]. Explosion and Shock Waves, 2019, 39(6): 124–135. DOI: 10.11883/bjycj-2018-0060.
    [8] 裴连政. 负泊松比夹芯板抗爆性能实验与仿真研究[D]. 大连: 大连理工大学, 2016: 11−34.
    [9] LAN X K, FENG S S, HUANG Q, et al. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores [J]. Aerospace Science and Technology, 2019, 87: 37–47. DOI: 10.1016/j.ast.2019.01.031.
    [10] JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
    [11] 魏然. 爆炸冲击下车身结构防护机理及多学科优化研究[D]. 南京: 南京理工大学, 2019: 3−4.
    [12] 王陶. 负泊松比结构力学特性研究及其在商用车耐撞性优化设计中的应用[D]. 南京: 南京理工大学, 2018: 21−22.
    [13] ZHOU G, MA Z D, LI G, et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm [J]. Structural and Multidisciplinary Optimization, 2016, 54(3): 673–684. DOI: 10.1007/s00158-016-1452-z.
    [14] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性 [J]. 爆炸与冲击, 2019, 39(1): 47–57. DOI: 10.11883/bzycj-2017-0281.

    HAN H L, ZHANG X C, WANG P. Dynamic response and energy absorption characteristics of negative Poisson’s ratio honeycomb materials [J]. Explosion and Shock Waves, 2019, 39(1): 47–57. DOI: 10.11883/bzycj-2017-0281.
    [15] 田永军, 段国林, 夏晓光, 等. 响应面模型与混合优化算法相结合的锯片参数优化设计 [J]. 中国机械工程, 2016, 27(22): 3025–3031. DOI: 10.3969/j.issn.1004-132X.2016.22.008.

    TIAN Y J, DUAN G L, XIA X G, et al. Optimization design of saw blade parameters based on response surface model and hybrid optimization algorithm [J]. China Mechanical Engineering, 2016, 27(22): 3025–3031. DOI: 10.3969/j.issn.1004-132X.2016.22.008.
    [16] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization [J]. AIAA Journal, 2001, 39(12): 2233–2241. DOI: 10.2514/2.1234.
    [17] 任朋飞. 抗冲击型车身柔性底部结构防护技术研究[D]. 南京: 南京理工大学, 2018: 54−55.
    [18] 詹长书, 王清. 基于改进遗传算法电动汽车变速器参数设计与优化 [J]. 重庆理工大学学报(自然科学版), 2020, 34(2): 1–5. DOI: 10.3969/j.issn.1674-8425(z).2020.02.001.

    ZHAN C S, WANG Q. Design and optimization of transmission parameters of electric vehicle based on improved genetic algotithm [J]. Journal of Chongqing Institute of Technology (Natural Science), 2020, 34(2): 1–5. DOI: 10.3969/j.issn.1674-8425(z).2020.02.001.
  • 加载中
图(23) / 表(7)
计量
  • 文章访问数:  3333
  • HTML全文浏览量:  1610
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-06-05
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回