大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究

郭瑞奇 任辉启 龙志林 吴祥云 姜锡权

郭瑞奇, 任辉启, 龙志林, 吴祥云, 姜锡权. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究[J]. 爆炸与冲击, 2020, 40(9): 093101. doi: 10.11883/bzycj-2020-0015
引用本文: 郭瑞奇, 任辉启, 龙志林, 吴祥云, 姜锡权. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究[J]. 爆炸与冲击, 2020, 40(9): 093101. doi: 10.11883/bzycj-2020-0015
GUO Ruiqi, REN Huiqi, LONG Zhilin, WU Xiangyun, JIANG Xiquan. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models[J]. Explosion And Shock Waves, 2020, 40(9): 093101. doi: 10.11883/bzycj-2020-0015
Citation: GUO Ruiqi, REN Huiqi, LONG Zhilin, WU Xiangyun, JIANG Xiquan. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models[J]. Explosion And Shock Waves, 2020, 40(9): 093101. doi: 10.11883/bzycj-2020-0015

大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究

doi: 10.11883/bzycj-2020-0015
基金项目: 国家自然科学基金(51971188, 51071134);湖南省科技重大专项(2019GK1012);湖湘高层次人才聚集工程创新团队(2019RS1059);湖南省研究生科研创新项目(CX2018B389)
详细信息
    作者简介:

    郭瑞奇(1993- ),男,博士研究生,grq_xtu@126.com

    通讯作者:

    龙志林(1965- ),男,博士,教授,博士生导师,longzl@xtu.edu.cn

  • 中图分类号: O347.1

Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models

  • 摘要: 对混凝土材料在高应变率下的动态拉伸实验多以劈裂和层裂的形式进行,然而它们作为间接研究混凝土动态拉伸性能的实验技术具有一定的局限性,亟需使用大直径分离式Hopkinson拉杆(split Hopkinson tensile bar,SHTB)设备对混凝土进行动态直拉实验。因此,运用数值模拟方法对一种新型的霍普金森拉杆的入射波进行了研究,并对设备的局部构件进行改进,使其不仅具有对混凝土试件的胶粘连接方式,也可通过螺纹连接配套夹具以同时兼顾挂接等其他连接方式。针对改进后的SHTB装置,建立了圆环状三维混凝土细观骨料模型。通过数值模拟与实验结果的对比,验证了采用空心圆管式SHTB装置的有效性,并为混凝土细观骨料模型的动态拉伸模拟提供了思路。
  • 图  1  使用Hopkinson压杆设备对混凝土材料进行动态拉伸实验[4, 10]

    Figure  1.  Dynamic tensile experiments of concrete materials with Hopkinson pressure bar apparatus[4, 10]

    图  2  使用实心子弹撞击空心入射管封头部位来产生拉伸波的大直径SHTB设备

    Figure  2.  Large diameter SHTB apparatus utilizing a solid bullet to strike end cap for generation of tensile stress wave

    图  3  大直径SHTB设备几个部位实物图

    Figure  3.  Photographs of several parts of large diameter SHTB device

    图  4  使用四面体单元划分的杆件以及使用“背景网格映射法”建立的混凝土细观骨料模型

    Figure  4.  Member bars meshed with tetrahedron elements and mesoscale concrete model established in background grid mapping method

    图  5  入射杆和透射杆的轴向应力云图

    Figure  5.  Axial stress distribution in incident and transmitted bars

    图  6  入射杆和透射杆上的应力波形

    Figure  6.  Stress waveforms in incident and transmitted bar

    图  7  大直径SHTB设备各部位的有限元模型

    Figure  7.  Finite element models for several parts of the large-diameter SHTB apparatus

    图  8  子弹撞击倒锥形封头计算结果

    Figure  8.  Calculation results for the bullet striking the reverse taper-shaped end cap

    图  9  销钉最大主应力云图

    Figure  9.  Maximum principal stress nephograms of dowels

    图  10  销钉受力情况

    Figure  10.  Stresses born by dowels

    图  11  大直径SHTB设备中的拉伸波形

    Figure  11.  Tensile stress waveforms in the large diameter SHTB apparatus

    图  12  应力波通过销钉前后的应力云图

    Figure  12.  Stress nephograms of the wave propagation process around the dowels part

    图  13  紫铜整形器有限元模型剖视图

    Figure  13.  Sectional drawing of the finite element model for the red copper pulse shaper

    图  14  整形后入射管和入射杆中的拉伸波形

    Figure  14.  Shaped tensile waveforms in incident tube and incident bar

    图  15  局部改进的大直径SHTB设备

    Figure  15.  Partly improved large diameter SHTB apparatus

    图  16  使用背景网格映射法建立的混凝土细观骨料模型

    Figure  16.  Mesoscale concrete models established by the background grid mapping method

    图  17  数值模拟应力波形与实验结果[25]对比

    Figure  17.  Comparison between simulated and experimental[25] waveforms

    图  18  圆环状混凝土试件数值模拟破坏结果与实验结果[25]对比

    Figure  18.  Comparison between simulated and experimental[25] phenomena

  • [1] KHOSRAVANI M R, WEINBERG K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete [J]. Construction and Building Materials, 2018, 190: 1264–1283. DOI: 10.1016/j.conbuildmat.2018.09.187.
    [2] 郭瑞奇, 任辉启, 张磊, 等. 分离式大直径Hopkinson杆实验技术研究进展 [J]. 兵工学报, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.

    GUO R Q, REN H Q, ZHANG L, et al. Research progress of large-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.
    [3] LAMBERT D E, ROSS C A. Strain rate effects on dynamic fracture and strength [J]. International Journal of Impact Engineering, 2000, 24(10): 985–998. DOI: 10.1016/S0734-743X(00)00027-0.
    [4] FENG W H, LIU F, YANG F, et al. Experimental study on dynamic split tensile properties of rubber concrete [J]. Construction and Building Materials, 2018, 165: 675–687. DOI: 10.1016/j.conbuildmat.2018.01.073.
    [5] 曹海, 马芹永. 预制与后浇混凝土粘结后的动态劈拉性能 [J]. 建筑材料学报, 2018, 21(1): 150–153;164. DOI: 10.3969/j.issn.1007-9629.2018.01.024.

    CAO H, MA Q Y. Dynamic splitting tensile performance of post pouring concrete adhered on precast concrete [J]. Journal of Building Materials, 2018, 21(1): 150–153;164. DOI: 10.3969/j.issn.1007-9629.2018.01.024.
    [6] CHEN X D, GE L M, ZHOU J K, et al. Dynamic Brazilian test of concrete using split Hopkinson pressure bar [J]. Materials and Structures, 2017, 50(1): 1. DOI: 10.1617/s11527-016-0885-6.
    [7] 胡时胜, 张磊, 武海军, 等. 混凝土材料层裂强度的实验研究 [J]. 工程力学, 2004, 21(4): 128–132. DOI: 10.3969/j.issn.1000-4750.2004.04.023.

    HU S S, ZHANG L, WU H J, et al. Experimental study on spalling strength of concrete [J]. Engineering Mechanics, 2004, 21(4): 128–132. DOI: 10.3969/j.issn.1000-4750.2004.04.023.
    [8] 张磊, 胡时胜. 混凝土层裂强度测量的新方法 [J]. 爆炸与冲击, 2006, 26(6): 537–542. DOI: 10.11883/1001-1455(2006)06-0537-06.

    ZHANG L, HU S S. A novel experimental technique to determine the spalling strength of concretes [J]. Explosion and Shock Waves, 2006, 26(6): 537–542. DOI: 10.11883/1001-1455(2006)06-0537-06.
    [9] WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete [J]. International Journal of Impact Engineering, 2005, 32(1-4): 605–617. DOI: 10.1016/j.ijimpeng.2005.05.008.
    [10] 俞鑫炉, 付应乾, 董新龙, 等. 混凝土一维应力层裂实验的全场DIC分析 [J]. 力学学报, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.

    YU X L, FU Y Q, DONG X L, et al. Full field DIC analysis of one-dimensional spall strength for concrete [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.
    [11] 巫绪涛, 代仁强, 陈德兴, 等. 钢纤维混凝土动态劈裂试验的能量耗散分析 [J]. 应用力学学报, 2009, 26(1): 151–154. DOI: 1000-4939(2009)01-0151-04.

    WU X T, DAI R Q, CHEN D X, et al. Energy dissipation analysis on dynamic splitting-tensile test of steel fiber reinforced concrete [J]. Chinese Journal of Applied Mechanics, 2009, 26(1): 151–154. DOI: 1000-4939(2009)01-0151-04.
    [12] 张磊,胡时胜,陈德兴,等. 混凝土材料的层裂特性 [J]. 爆炸与冲击, 2008, 28(3): 193–199. DOI: 10.11883/1001-1455(2008)03-0193-07.

    ZHANG L, HU S S, CHEN D X, et al. Spall characteristics of concrete materials [J]. Explosion and Shock Waves, 2008, 28(3): 193–199. DOI: 10.11883/1001-1455(2008)03-0193-07.
    [13] 张凯, 陈荣刚, 张威, 等. 混凝土动态直接拉伸实验技术研究 [J]. 实验力学, 2014, 29(1): 89–96. DOI: 10.7520/1001-4888-13-064.

    ZHANG K, CHEN R G, ZHANG W, et al. Study of experimental technique for concrete dynamic direct tension [J]. Journal of Experimental Mechanics, 2014, 29(1): 89–96. DOI: 10.7520/1001-4888-13-064.
    [14] LEVI-HEVRONI D, KOCHAVI E, KOFMAN B, et al. Experimental and numerical investigation on the dynamic increase factor of tensile strength in concrete [J]. International Journal of Impact Engineering, 2018, 114: 93–104. DOI: 10.1016/j.ijimpeng.2017.12.006.
    [15] 姜锡权, 徐可立, 方文敏, 等. 新型分离式霍普金森拉杆装置: CN201310044304.3 [P]. 2013-05-08.
    [16] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017.
    [17] 郭瑞奇, 任辉启, 张磊, 等. 基于混凝土细观骨料模型的SHPB仿真模拟研究 [J]. 振动与冲击, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.

    GUO R Q, REN H Q, ZHANG L, et al. Simulation for SHPB tests based on a mesoscopic concrete aggregate model [J]. Journal of Vibration and Shock, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.
    [18] 崔堃鹏, 夏超逸, 刘炎海, 等. 高速铁路桥墩汽车撞击力的数值模拟与特性分析 [J]. 桥梁建设, 2013, 43(6): 57–63. DOI: 1003-4722(2013)06-0057-07.

    CUI K P, XIA C Y, LIU Y H, et al. Numerical simulation and characteristic analysis of vehicle collision forces in high-speed railway bridge pier [J]. Bridge Construction, 2013, 43(6): 57–63. DOI: 1003-4722(2013)06-0057-07.
    [19] 韩志伟, 周红杰, 李春, 等. 海上风力机与船舶碰撞的动力响应及防碰装置 [J]. 中国机械工程, 2019, 30(12): 1387–1394. DOI: 10.3969/j.issn.1004-132X.2019.12.001.

    HAN Z W, ZHOU H J, LI C, et al. Dynamic response and anti collision devices of an offshore wind turbine subjected to ship impacts [J]. China Mechanical Engineering, 2019, 30(12): 1387–1394. DOI: 10.3969/j.issn.1004-132X.2019.12.001.
    [20] 王礼立. 应力波基础[M].2版.北京: 国防工业出版社, 2005.
    [21] 果春焕, 周培俊, 陆子川, 等. 波形整形技术在Hopkinson杆实验中的应用 [J]. 爆炸与冲击, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.

    GUO C H, ZHOU P J, LU Z C, et al. Application of pulse shaping technique in Hopkinson bar experiments [J]. Explosion and Shock Waves, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.
    [22] 江德斐, 林国标, 舒大禹, 等. T2铜的动态力学性能及本构关系 [J]. 中国有色金属学报, 2016, 26(7): 1437–1443. DOI: 1004-0609(2016)-07-1437-07.

    JIANG D F, LIN G B, SHU D Y, et al. Dynamic mechanical property and constitutive relation of T2 copper [J]. Chinese Journal of Nonferrous Metals, 2016, 26(7): 1437–1443. DOI: 1004-0609(2016)-07-1437-07.
    [23] ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: part I: experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327–1334. DOI: 10.1016/j.ijimpeng.2009.04.009.
    [24] LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
    [25] ZHANG S, LU Y B, JIANG X Q, et al. Inertial effect on concrete-like materials under dynamic direct tension [J]. International Journal of Protective Structures, 2018, 9(3): 377–396. DOI: 10.1177/2041419618766156.
    [26] 金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析 [J]. 工程力学, 2015, 32(8): 42–49. DOI: 10.6052/j.issn.1000-4750.2013.08.0791.

    JIN L, DU X L. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete [J]. Engineering Mechanics, 2015, 32(8): 42–49. DOI: 10.6052/j.issn.1000-4750.2013.08.0791.
    [27] 吴成, 沈晓军, 王晓鸣, 等. 细观混凝土靶抗侵彻数值模拟及侵彻深度模型 [J]. 爆炸与冲击, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.

    WU C, SHEN X J, WANG X M, et al. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target [J]. Explosion and Shock Waves, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.
    [28] 邓勇军, 陈小伟, 姚勇, 等. 基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析 [J]. 爆炸与冲击, 2017, 37(3): 377–386. DOI: 10.11883/1001-1455(2017)03-0377-10.

    DENG Y J, CHEN X W, YAO Y, et al. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model [J]. Explosion and Shock Waves, 2017, 37(3): 377–386. DOI: 10.11883/1001-1455(2017)03-0377-10.
    [29] 郭瑞奇. 三维混凝土骨料模型的p型自适应有限元及其快速求解算法[D]. 湘潭: 湘潭大学, 2017.
    [30] CHEN G, HAO Y F, HAO H. 3D meso-scale modelling of concrete material in spall tests [J]. Materials and Structures, 2015, 48(6): 1887–1899. DOI: 10.1617/s11527-014-0281-z.
    [31] XU Z, HAO H, LI H N. Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres [J]. Cement and Concrete Research, 2012, 42(11): 1475–1493. DOI: 10.1016/j.cemconres.2012.07.006.
    [32] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9-10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [33] MALVAR L J, CRAWFORD J E, MORRILL K B. K&C concrete material model release Ⅲ: automated generation of material model input[R]. Karagozian and Case Structural Engineers, 2000.
  • 加载中
图(18)
计量
  • 文章访问数:  2995
  • HTML全文浏览量:  1352
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 修回日期:  2020-04-01
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回