内爆加载下金属柱壳的冻结回收方法

罗渝松 李伟兵 陈志闯 王晓鸣 李文彬

罗渝松, 李伟兵, 陈志闯, 王晓鸣, 李文彬. 内爆加载下金属柱壳的冻结回收方法[J]. 爆炸与冲击, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
引用本文: 罗渝松, 李伟兵, 陈志闯, 王晓鸣, 李文彬. 内爆加载下金属柱壳的冻结回收方法[J]. 爆炸与冲击, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
LUO Yusong, LI Weibing, CHEN Zhichuang, WANG Xiaoming, LI Wenbin. A freezing recovery method for metallic cylinder shells under internal explosive loading[J]. Explosion And Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
Citation: LUO Yusong, LI Weibing, CHEN Zhichuang, WANG Xiaoming, LI Wenbin. A freezing recovery method for metallic cylinder shells under internal explosive loading[J]. Explosion And Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041

内爆加载下金属柱壳的冻结回收方法

doi: 10.11883/bzycj-2020-0041
基金项目: 国家自然科学基金(11972018);装备预研兵器工业联合基金(6141B012858)
详细信息
    作者简介:

    罗渝松(1995- ),男,博士研究生,njlgdxlys@163.com

    通讯作者:

    李伟兵(1982- ),男,博士,研究员,njustlwb@163.com

  • 中图分类号: O381;TJ410

A freezing recovery method for metallic cylinder shells under internal explosive loading

  • 摘要: 针对内爆炸载荷下膨胀态金属柱壳的回收问题,设计了冻结回收试验方法,实现了起爆后不同时刻金属柱壳的冻结回收。基于一体式壳体提出了3种改进结构,并分别对4种柱壳结构在内爆载荷下的膨胀断裂过程进行数值模拟。结果表明,两段式结构最有利于减小非起爆端对预期回收中间段壳体的影响。根据选定的最优壳体结构和金属柱壳在起爆后不同时刻的膨胀外形特征,设计与之匹配的冻结回收装置并进行冻结回收试验。试验结果表明,设计的冻结回收试验方法可以实现膨胀态金属柱壳的回收,回收壳体的轴向和径向尺寸与设计理想值符合较好,整体误差可控制在10%以内。
  • 图  1  4种壳体的结构方案

    Figure  1.  Structures of four shells

    图  2  一体式壳体的仿真计算模型(1~21为观测点)

    Figure  2.  The simulation calculation model for the integrated shell (1−21 are observed points)

    图  3  起爆后30 μs时刻4种壳体的径向位移

    Figure  3.  Radial displacements of four shells at 30 μs after detonation

    图  4  壳体断裂分区

    Figure  4.  Division of fracture area of the shell

    图  5  一体式壳体的膨胀变形响应压力云图

    Figure  5.  Variation of internal pressure of integrated shell with expansion and deformation process

    图  6  匹配不同时刻壳体膨胀外形设计的冻结回收装置结构尺寸

    Figure  6.  Structural dimensions of designed freezing recovery devices matching deformation responses of shells at different times

    图  7  3个回收时刻壳体径向变形响应

    Figure  7.  Radial deformation response of the shell at three recovery times

    图  8  3个时刻下的壳体回收半径

    Figure  8.  Recovery radii of the shell at three recovery times

    图  9  金属柱壳装药结构

    Figure  9.  Charge structures of the metal cylindrical shell

    图  10  冻结回收试验总体布局

    Figure  10.  Overall layout of the freeze recovery test

    图  11  23 µs时刻的壳体冻结回收试验结果

    Figure  11.  Shell obtained from freezing recovery test at 23 μs

    图  12  23 µs时刻中间段壳体的回收半径

    Figure  12.  Recovery radii of the middle section shell at 23 µs

  • [1] TAYLOR G I. Fragmentation of tubular bombs [M] // BATCHELOR O K. The Scientific Papers of Sir Geoffrey Ingram Taylor. Cambridge: Cambridge University Press, 1963: 387−390.
    [2] ZHU J J, LI W B, WANG X M, et al. Effect of tempering temperature on expansion and fracture mechanism of 40CrMnSiB steel cylinder shell [J]. International Journal of Impact Engineering, 2017, 107: 38–46. DOI: 10.1016/j.ijimpeng.2017.05.007.
    [3] 陈醇. 三代炸药爆炸加载下战斗部壳体形变规律及破片性能研究[D]. 南京: 南京理工大学, 2015: 14−22.
    [4] 朱建军, 李伟兵, 王晓鸣, 等. 回火温度对50SiMnVB钢壳体形成破片性能的影响 [J]. 兵工学报, 2015, 36(11): 2080–2086. DOI: 10.3969/j.issn.1000-1093.2015.11.009.

    ZHU J J, LI W B, WANG X M, et al. Effect of tempering temperature on the forming properties of fragments of 50SiMnVB steel shell [J]. Acta Armamentarii, 2015, 36(11): 2080–2086. DOI: 10.3969/j.issn.1000-1093.2015.11.009.
    [5] 朱如意, 韩保红, 赫万恒. 杀爆榴弹战斗部静态爆炸效能仿真研究 [J]. 计算机仿真, 2015, 32(11): 18–21. DOI: 10.3969/j.issn.1006-9348.2015.11.005.

    ZHU R Y, HAN B H, HE W H. Simulation study on static explosive efficiency of blast fragmentation warhead [J]. Computer Simulation, 2015, 32(11): 18–21. DOI: 10.3969/j.issn.1006-9348.2015.11.005.
    [6] SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(9): 939–954. DOI: 10.1016/S0734-743X(02)00002-7.
    [7] WANG X Y, WANG S S, MA F. Experimental study on the expansion of metal cylinders by detonation [J]. International Journal of Impact Engineering, 2018, 114: 147–152. DOI: 10.1016/j.ijimpeng.2017.12.017.
    [8] GOLD V M, BAKER E L. A model for fracture of explosively driven metal shells [J]. Engineering Fracture Mechanics, 2008, 75(2): 275–289. DOI: 10.1016/j.engfracmech.2007.02.025.
    [9] HUANG G Y, LI W, FENG S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading [J]. International Journal of Impact Engineering, 2015, 76: 20–27. DOI: 10.1016/j.ijimpeng.2014.08.007.
    [10] GUO Z W, HUANG G Y, LIU C M, et al. Velocity axial distribution of fragments from non-cylindrical symmetry explosive-filled casing [J]. International Journal of Impact Engineering, 2018, 118: 1–10. DOI: 10.1016/j.ijimpeng.2018.03.011.
    [11] SUN G J, WANG X Y, GAO W L, et al. Expansion fracture behavior of metallic cylindrical shell caused by explosive detonation [J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(4): 042124.
    [12] 禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.
    [13] 奥尔连科. 爆炸物理学: 下册 [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 807−822.
    [14] 陈志闯, 李伟兵, 朱建军, 等. 40CrMnSiB钢圆柱壳体膨胀断裂中间状态回收试验研究 [J]. 兵工学报, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.

    CHEN Z C, LI W B, ZHU J J, et al. Recovery experiment study of cylindrical 40CrMnSiB steel shell in intermediate phase of expanding fracture processes [J]. Acta Armamentarii, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.
    [15] TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end [M] // BATCHELOR G K. The Scientific Papers of Sir Geoffrey Ingram Taylor: Ⅲ. Cambridge: Cambridge University Press, 1963: 277−286.
    [16] 任国武,郭昭亮,汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究 [J]. 兵工学报, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.

    REN G W, GUO S L, TANG T G, et al. Experimental research on fracture of metal case under loading at high strain rate [J]. Acta Armamentarii, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.
    [17] 陈志闯. 基于冻结回收的金属壳体膨胀断裂机制研究[D]. 南京: 南京理工大学, 2019: 27−28.
    [18] 顾文彬, 胡亚峰, 徐浩铭, 等. 复合结构防爆罐抗爆特性的数值模拟 [J]. 含能材料, 2014, 22(3): 325–331. DOI: 10.3969/j.issn.1006-9941.2014.03.010.

    GU W B, HU Y F, XU H M, et al. Numerical simulation of blast resistant characteristics for the composite structure anti-explosion container [J]. Chinese Journal of Energetic Materials, 2014, 22(3): 325–331. DOI: 10.3969/j.issn.1006-9941.2014.03.010.
    [19] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
  • 加载中
图(12)
计量
  • 文章访问数:  3153
  • HTML全文浏览量:  1375
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-06-29
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回