层状结构冰球的高速撞击特性实验

谭晓军 冯晓伟 胡艳辉 谢若泽 杨世全 拜云山

谭晓军, 冯晓伟, 胡艳辉, 谢若泽, 杨世全, 拜云山. 层状结构冰球的高速撞击特性实验[J]. 爆炸与冲击, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047
引用本文: 谭晓军, 冯晓伟, 胡艳辉, 谢若泽, 杨世全, 拜云山. 层状结构冰球的高速撞击特性实验[J]. 爆炸与冲击, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047
TAN Xiaojun, FENG Xiaowei, HU Yanhui, XIE Ruoze, YANG Shiquan, BAI Yunshan. Experimental investigation on characteristics of layered ice spheres under high-velocity impact[J]. Explosion And Shock Waves, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047
Citation: TAN Xiaojun, FENG Xiaowei, HU Yanhui, XIE Ruoze, YANG Shiquan, BAI Yunshan. Experimental investigation on characteristics of layered ice spheres under high-velocity impact[J]. Explosion And Shock Waves, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047

层状结构冰球的高速撞击特性实验

doi: 10.11883/bzycj-2020-0047
基金项目: 国家自然科学基金(11502258)
详细信息
    作者简介:

    谭晓军(1988- ),男,硕士,工程师,414tanxj@caep.cn

    通讯作者:

    冯晓伟(1984- ),男,博士,副研究员,414fengxw@caep.cn

  • 中图分类号: O383

Experimental investigation on characteristics of layered ice spheres under high-velocity impact

  • 摘要: 为研究冰雹在不同撞击速度下的破碎特性及致损能力,通过空气炮加载技术,开展了单一性状冰球和层状结构冰球高速撞击刚性靶实验,利用测力杆记录了两种类型冰球在不同撞击速度下的撞击力时程曲线,并结合高速摄影技术研究了两类冰球的高速撞击破碎特性。实验结果表明:两类冰球高速撞击刚性靶的宏观破碎特性相似,在碰撞初始阶段冰球已完全破碎,形成微颗粒团簇体,反向溅射角呈随撞击动能增大而增大的趋势;与单一性状冰球撞击力曲线相比,层状结构冰球撞击力曲线中出现二次上升信号,推测是由于破碎界面在层间界面发生偏折,小球未完全破碎再次撞击测力杆所导致;高速撞击下层状结构冰球的撞击力高于单一性状冰球,推测是由于层间结构的存在延缓了冰球的破碎进程,提升了其在冲击方向传递动量的能力,进而产生了更高的撞击力。研究结果有助于深化对冰雹在高速撞击下的破坏力学行为的认识,同时可为飞行器结构防护、冰雹撞击安全设计研究等提供参考。
  • 图  1  冰雹层状结构

    Figure  1.  Spherically layered construction of hail

    图  2  人工模拟冰雹(单一性状冰球和层状结构冰球)[6]

    Figure  2.  Simulated hail ice constructions (monolithic and layered)[6]

    图  3  冰球制备模具

    Figure  3.  A mold for production of ice spheres

    图  4  小冰球在大冰球模具中的定位方法

    Figure  4.  Location method of small ice spheres in the mold of big ice spheres

    图  5  层状冰球剖视图

    Figure  5.  Cutaway view of layered ice spheres

    图  6  冰球放置于弹托

    Figure  6.  Ice sphere with sabot

    图  7  空气炮实验系统

    Figure  7.  Gas gun apparatus used to project ice sphere

    图  8  单一性状冰球高速撞击测力杆高速摄影图片

    Figure  8.  High-speed videos of monolithic ice spheres impacting on force measurement bars

    图  9  层状结构冰球高速撞击测力杆高速摄影图片

    Figure  9.  High-speed videos of layered ice spheres impacting on force measurement bars

    图  10  碎片撞击反向溅射角度示意图

    Figure  10.  Definition of the post-impact angle

    图  11  单一性状冰球高速撞击碎片反向溅射角度

    Figure  11.  Fragmentation post-impact angles of monolithic-ice spheres

    图  12  层状结构冰球高速撞击碎片反向溅射角度

    Figure  12.  Fragmentation post-impact angles of layered-ice spheres

    图  13  单一性状冰球撞击力时程曲线

    Figure  13.  Force time history traces for monolithic-ice spheres

    图  14  层状结构冰球撞击力时程曲线

    Figure  14.  Force time history traces for layered-ice spheres

    图  15  冰球峰值撞击力随撞击动能的变化

    Figure  15.  Peak impact force against kinetic energy of ice spheres

    表  1  冰球高速撞击实验参数

    Table  1.   High-velocity impact test parameters of ice spheres

    序号类型弹丸质量/g撞击速度/(m·s−1)
    1-1层状结构冰球 98.0162
    1-2层状结构冰球 97.8 87
    1-3层状结构冰球 97.9102
    2-1单一性状冰球100.3129
    2-2单一性状冰球 97.1 80
    2-3单一性状冰球 97.1201
    下载: 导出CSV

    表  2  层状结构冰球撞击力时程曲线二次升高信号时间

    Table  2.   Secondary rise signals in force-time histories of layered ice spheres

    撞击速度/(m·s−1)二次信号出现时刻/ms小球撞击理论时刻/ms
    162197185
    102201294
    87243345
    下载: 导出CSV
  • [1] PEREIRA J, PADULA S, REVILOCK D, et al. Forces generated by high velocity impact of ice on a rigid structure: TM-2006-214263 [R]. NASA, 2006.
    [2] GUÉGAN P, OTHMAN R, LEBRETON D, et al. Experimental investigation of the kinematics of post-impact ice fragments [J]. International Journal of Impact Engineering, 2011, 38(10): 786–795. DOI: 10.1016/j.ijimpeng.2011.05.003.
    [3] COMBESCURE A, CHUZEL-MARMOT Y, FABIS J. Experimental study of high-velocity impact and fracture of ice [J]. International Journal of Solids and Structures, 2011, 48(20): 2779–2790. DOI: 10.1016/j.ijsolstr.2011.05.028.
    [4] TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation [J]. International Journal of Impact Engineering, 2013, 57: 43–54. DOI: 10.1016/j.ijimpeng.2013.01.013.
    [5] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Analysis of ice impact process at high velocity [J]. Experimental Mechanics, 2015, 55: 1669–1679. DOI: 10.1007/s11340-015-0067-4.
    [6] KIM H, KEDWARD K T. Modeling hail ice and predicting impact damage initiation in composite structure [J]. AIAA Journal, 2000, 38(7): 1276–1286. DOI: 10.2514/2.1099.
    [7] KIM H, WELCH D, KEDWARD K T. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels [J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(1): 25–41. DOI: 10.1016/S1359-835X(02)00258-0.
    [8] PARK H, KIM H. Damage resistance of single lap adhesive composite joints by transverse ice impact [J]. International Journal of Impact Engineering, 2010, 37(2): 177–184. DOI: 10.1016/j.ijimpeng.2009.08.005.
    [9] RHYMER J, KIM H. Prediction of delamination onset and critical force in carbon/epoxy panels impacted by ice spheres [J]. Computers, Materials and Continua, 2013, 35(2): 87–117. DOI: 10.1038/nmat3632.
    [10] DOLATI S, FEREIDOON A, SABET A R. Experimental investigation into glass fiber/epoxy composite laminates subjected to single and repeated high-velocity impacts of ice [J]. Iranian Polymer Journal, 2014, 23: 477–486. DOI: 10.1007/s13726-014-0242-y.
    [11] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates [J]. International Journal of Impact Engineering, 2016, 96: 1–10. DOI: 10.1016/j.ijimpeng.2016.05.010.
    [12] SONG Z H, LE J, WHISLER D, et al. Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact [J]. International Journal of Impact Engineering, 2018, 122: 439–450. DOI: 10.1016/j.ijimpeng.2018.09.014.
    [13] JONES S J. High strain-rate compression tests on ice [J]. The Journal of Physical Chemistry B, 1997, 101(32): 6099–6101. DOI: 10.1021/jp963162j.
    [14] DUTTA P K, COLE D M, SCHULSON E M, et al. A fracture study of ice under high strain rate loading [J]. International Offshore and Polar Engineering, 2004, 14: 182–188. DOI: 10.1109/TITS.2004.833767.
    [15] KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42: 2802–2806. DOI: 10.1007/s10853-006-1376-x.
    [16] SHAZLY M, PRAKASH V, LERCH B A. High strain-rate behavior of ice under uniaxial compression [J]. International Journal of Solids and Structures, 2009, 46(6): 1499–1515. DOI: 10.1016/j.ijsolstr.2008.11.020.
    [17] 汪洋, 李玉龙, 刘传雄. 利用SHPB测定高应变率下冰的动态力学行为 [J]. 爆炸与冲击, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.

    WANG Y, LI Y L, LIU C X. Dynamic mechanical behaviors of ice at high strain rates [J]. Explosion and Shock Waves, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.
    [18] WU X Q, PRAKASH V. Dynamic strength of distill water and lake water ice at high strain rates [J]. International Journal of Impact Engineering, 2015, 76: 155–165. DOI: 10.1016/j.ijimpeng.2014.09.013.
    [19] 李尚昆, 冯晓伟, 谢若泽, 等. 高应变率下纯水冰和杂质冰的动态力学行为研究 [J]. 爆炸与冲击, 2019, 39(9): 093103. DOI: 10.11883/bzycj-2018-0270.

    LI S K, FENG X W, XIE R Z, et al. Dynamic compression property of distill-water ice and impurity-water ice at high strain rates [J]. Explosion and Shock Waves, 2019, 39(9): 093103. DOI: 10.11883/bzycj-2018-0270.
    [20] ANGHILERI M, INVEMIZZI F, MASCHERONI M. A survey of numerical models for hail impact analysis using explicit finite element codes [J]. International Journal of Impact Engineering, 2005, 31(8): 929–944. DOI: 10.1016/j.ijimpeng.2004.06.009.
    [21] CARNEY K S, BENSON D J, DUBOIS P, et al. A phenomenological high strain rate model with failure for ice [J]. International Journal of Solids and Structures, 2006, 43(25–26): 7820–7839. DOI: 10.1016/j.ijsolstr.2006.04.005.
    [22] SHERBUM J A, HORSTEMEYER M F. Hydrodynamic modeling of impact craters in ice [J]. International Journal of Impact Engineering, 2010, 37(1): 27–36. DOI: 10.1016/j.ijimpeng.2009.07.001.
    [23] SAIN T, NARASIMHAN R. Constitutive modeling of ice in the high strain rate regime [J]. International Journal of Solids and Structures, 2011, 48(5): 817–827. DOI: 10.1016/j.ijsolstr.2010.11.016.
    [24] PERNAS-SÁNCHEZ J, PEDROCHE D A, VARAS D, et al. Numerical modeling of ice behavior under high velocity impacts [J]. International Journal of Solids and Structures, 2012, 49: 1919–1927. DOI: 10.1016/j.ijsolstr.2012.03.038.
    [25] 刘洋, 王富生, 岳珠峰. 冰雹冲击复合材料层合板失效模式分析与数值模拟 [J]. 振动与冲击, 2011, 30(9): 150–154. DOI: 10.1631/jzus.A1000257.

    LIU Y, WANG F S, YUE Z F. Failure model analysis and simulation of laminated composite plate under hailstone impacting [J]. Journal of Vibration and Shock, 2011, 30(9): 150–154. DOI: 10.1631/jzus.A1000257.
    [26] TANG Z B, HANG C, SUO T, et al. Numerical and experimental investigation on hail impact on composite panels [J]. International Journal of Impact Engineering, 2017, 105: 102–108. DOI: 10.1016/j.ijimpeng.2016.05.016.
    [27] 张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态效应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.

    ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
    [28] 李光亮. 冰雹[M]. 北京: 气象出版社, 2002.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1900
  • HTML全文浏览量:  938
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-08-07
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回