载人空投着陆冲击下不同乘员姿态的损伤影响

戴俊超 周云波 张进成 张明 王显会 孙晓旺

戴俊超, 周云波, 张进成, 张明, 王显会, 孙晓旺. 载人空投着陆冲击下不同乘员姿态的损伤影响[J]. 爆炸与冲击, 2021, 41(1): 015901. doi: 10.11883/bzycj-2020-0073
引用本文: 戴俊超, 周云波, 张进成, 张明, 王显会, 孙晓旺. 载人空投着陆冲击下不同乘员姿态的损伤影响[J]. 爆炸与冲击, 2021, 41(1): 015901. doi: 10.11883/bzycj-2020-0073
DAI Junchao, ZHOU Yunbo, ZHANG Jincheng, ZHANG Ming, WANG Xianhui, SUN Xiaowang. Effects of different postures on crew damage under the impact of manned airdrop landing[J]. Explosion And Shock Waves, 2021, 41(1): 015901. doi: 10.11883/bzycj-2020-0073
Citation: DAI Junchao, ZHOU Yunbo, ZHANG Jincheng, ZHANG Ming, WANG Xianhui, SUN Xiaowang. Effects of different postures on crew damage under the impact of manned airdrop landing[J]. Explosion And Shock Waves, 2021, 41(1): 015901. doi: 10.11883/bzycj-2020-0073

载人空投着陆冲击下不同乘员姿态的损伤影响

doi: 10.11883/bzycj-2020-0073
基金项目: 国家自然科学基金(11802140)
详细信息
    作者简介:

    戴俊超(1994- ),男,硕士研究生,19910625452@163.com

    通讯作者:

    周云波(1980- ),男,博士,副教授,yunbo31983@163.com

  • 中图分类号: O382; E923.3

Effects of different postures on crew damage under the impact of manned airdrop landing

  • 摘要: 针对某军用车辆在1 m高度进行无缓冲平台空投实验,并建立座椅与乘员的模拟模型。利用实验获取的座椅安装点冲击信号作为模拟模型的输入数据,并通过实验结果与模拟结果的对比验证了该模型的可靠性。借鉴航空工程相关研究,提出了一种将各关键损伤指标加以归一化的权重评价指标—加权损伤准则(weighted injury criteria,WIC)。研究了乘员仰卧角度和大小腿夹角两个姿态参数对乘员损伤的影响,并以WIC为优化目标,利用遗传算法完成参数优化工作。研究发现:对乘员小腿运动进行约束能降低乘员整体损伤响应,乘员对抗着陆冲击的最佳姿态为仰卧角47°~56°、大小腿夹角62°~68°。
  • 图  1  实验装置整体布置

    Figure  1.  Overall arrangement of the experimental setup

    图  2  车内实验假人的姿势及加速度传感器的布置

    Figure  2.  The test dummy posture in vehicle and the acceleration sensor arrangement on the joist

    图  3  座椅安装点Z向加速度时间历程

    Figure  3.  Change of acceleration along Z direction with time at the mounting point on the seat

    图  4  假人的运动状态

    Figure  4.  Motion statuses of the dummy

    图  5  乘员约束系统有限元模型

    Figure  5.  A finite element model of the crew restraint system

    图  6  坐垫靠垫和安全带材料应力应变曲线

    Figure  6.  Stress-strain curves of cushion and seat belt materials

    图  7  实验与模拟假人损伤对比

    Figure  7.  Comparison of experimental and simulated dummy damage

    图  8  乘员约束系统设计

    Figure  8.  Passenger restraint system design

    图  9  小腿约束对乘员响应的影响

    Figure  9.  Effect of calf restraint on passenger response

    图  10  不同仰卧角度对成员身体几个关键部位动态响应的影响

    Figure  10.  Effects of different supine angles on dynamic responses of several key parts of a passenger’s body

    图  11  大小腿的不同夹角对成员身体几个关键部位动态响应的影响

    Figure  11.  Effects of different angles between the calf and the thigh on dynamic responses of several key parts of a passenger’s body

    图  12  第50代优化解集

    Figure  12.  The 50th generation optimization solution set

    图  13  加权损伤准则优化解集

    Figure  13.  Optimized solution set based on weighted injury criteria

    表  1  不同部位伤害标准和限值

    Table  1.   Injury standards and threshold values for different parts

    部位损伤标准注解损伤指标损伤指标限值
    头部GX/g头部X向加速度GX,lim/g26
    GZ/g头部Z向加速度GZ,lim/g20
    颈部Fn,Z/kN颈部压缩轴向力Fn,Z,lim/kN−1.3
    Mn,Y/(N·m)颈部力矩Mn,Y,liml/(N·m)135
    Nij轴向力和弯曲力矩线性合成准则1
    腰椎Flum,Z/kN腰椎轴向力Flum,Z,lim/kN8
    Mlum,Y/(N·m)腰椎Y向弯矩Mlum,Y,lim/(N·m)400
    盆骨Gp/g盆骨Z向加速度
    λdri动态响应指数λdri,lim13.4
    下载: 导出CSV

    表  2  主要结构材料参数

    Table  2.   Main structural material parameters

    材料密度/(g·cm−3)弹性模量/GPa泊松比屈服极限/MPa拉伸失效应变
    Q2357.8210.00.31235.00.24
    泡沫0.228.30.4019.70.50
    A3003H14铝2.770.00.30110.00.10
    下载: 导出CSV

    表  3  实验与模拟数据对比

    Table  3.   Comparison of experimental and simulated data

    方法GZ/gFn,Z/kNMn,Y/(N·m)Flum,Z/kNMlum,Y/(N·m)Gp/g
    实验16.70.7956.74.65126.717.9
    模拟18.80.7663.94.52151.215.6
    相对误差/%12.63.512.72.619.312.8
    下载: 导出CSV

    表  4  设计变量选取

    Table  4.   Selection of design variables

    设计参数采样点
    α/(°)010203040506070
    β/(°)6090120150
    下载: 导出CSV

    表  5  小腿有、无约束模拟数据对比

    Table  5.   Comparison of simulation data between the calf with and without restraint

    模拟条件GX/gGZ/gFn,Z/kNMn,Y/(N·m)Flum,Z/kNMlum,Y/(N·m)IdIw
    小腿无约束10.218.800.76363.94.521573.760.536 0
    小腿有约束8.715.380.71559.33.921223.660.411 6
    相对差值/%14.718.25.77.213.421.82.723.2
    下载: 导出CSV

    表  6  不同仰卧角度的仿真数据对比

    Table  6.   Comparison of simulation data of different supine angles

    α/(°)GX/gGZ/gFn,Z/kNMn,Y/(N·m)Flum,Z/kNMlum,Y/(N·m)IdIw
    08.715.380.5930.3183.92112.83.460.411 6
    109.3114.050.5580.2914.45149.03.180.425 3
    2010.8813.960.5750.2604.28176.23.10.432 6
    3013.2212.330.5650.2083.46223.91.840.410 5
    4015.9511.200.5870.1282.85225.01.820.385 6
    5013.0511.700.5450.1042.27202.01.850.343 6
    6013.8011.890.5640.0801.79239.01.470.346 6
    7013.9010.300.52490.0901.43279.01.490.349 3
    下载: 导出CSV

    表  7  不同大小腿夹角的空投冲击工况模拟数据对比

    Table  7.   Comparison of simulation data among airdrop impact conditions with different angles between the calf and the thigh

    β/(°)GX/gGZ/gFn,Z/kNMn,Y/(N·m)Flum,Z/kNMlum,Y/(N·m)IdIw
    609.811.660.4910.2473.87104.33.550.365 2
    908.715.380.5930.3183.92122.83.660.411 6
    12011.813.20.5660.3164.74127.93.820.435 5
    1508.3913.470.5280.2704.53105.54.420.405 6
    下载: 导出CSV

    表  8  优化结果和仿真结果的对比

    Table  8.   Comparison of optimization results and simulation results

    项目GX/gGZ/gFn,Z/kNMn,Y/(N·m)Flum,Z/kNMlum,Y/(N·m)IdIw
    优化结果0.49870.103 11.702011.350.326
    优化后模拟结果13.310.40.51580.106 01.722291.040.328
    误差/%32.81.213.922.90.6
    下载: 导出CSV

    表  9  优化后方案与原始方案的对比

    Table  9.   Comparison between the optimized solution and the original solution

    项目GX/gGZ/gFn,Z/kNMn,Y/(N·m)Flum,Z/kNMlum,Y/(N·m)IdIw
    初始值10.218.80.720 20.5704.521573.760.536
    优化后模拟结果13.310.40.515 80.1061.722291.040.328
    相对差值/%−3044.720.481.461.9−457238.8
    下载: 导出CSV
  • [1] 刘鑫. 基于气囊缓冲的载人空降乘员防护理论与方法[D]. 长沙: 湖南大学, 2009. DOI: 10.7666/d.d146725.
    [2] 刘鑫, 张志勇. 基于气囊缓冲的载人空降乘员防护装置优化设计 [J]. 机械工程学报, 2010, 48(21): 168–174. DOI: 10.3901/JME.2012.21.168.

    LIU X, ZHANG Z Y. Optimal design of passenger’s protection devices in manned airdrop based on airbag cushion [J]. Journal of Mechanical Engineering, 2010, 48(21): 168–174. DOI: 10.3901/JME.2012.21.168.
    [3] STAPP J P, TAYLOR E R. Space cabin landing impact vector effects on human physiology [J]. Aerospace Medicine, 1964, 35: 1117–1133.
    [4] 成自龙, 韩延方, 曾文艺, 等. 人体坐姿着陆冲击(+G z)耐限区间的研究 [J]. 航天医学与医学工程, 1997, 10(5): 340–343. DOI: 10.16289/j.cnki.1002-0837.1997.05.008.

    CHENG Z L, HAN Y F, ZENG W Y, et al. Human tolerance to landing impact (+G z) in sitting position [J]. Space Medicine and Medical Engineering, 1997, 10(5): 340–343. DOI: 10.16289/j.cnki.1002-0837.1997.05.008.
    [5] 刘炳坤, 王宪民, 王玉兰, 等. 不同体位着陆冲击时人体的动态响应 [J]. 航天医学与医学工程, 2001, 14(2): 121–123. DOI: 10.3969/j.issn.1002-0837.2001.02.010.

    LIU B K, WANG X M, WANG Y L, et al. Human dynamic response to landing impact in selected body orientations [J]. Space Medicine and Medical Engineering, 2001, 14(2): 121–123. DOI: 10.3969/j.issn.1002-0837.2001.02.010.
    [6] 冯宇, 于广春, 吴增斌, 等. 某轮式空降战车模拟着地冲击试验方法研究 [J]. 车辆与动力技术, 2019(2): 62–64. DOI: 10.16599/j.cnki.1009-4687.2019.02.012.

    FENG Y, YU G C, WU Z B, et al. Research on the simulated landing impact test method of a wheeled airborne fighting vehicle [J]. Vehicle and Power Technology, 2019(2): 62–64. DOI: 10.16599/j.cnki.1009-4687.2019.02.012.
    [7] 俞彤, 王显会, 周云波, 等. 爆炸环境下车辆地板加速度对乘员小腿损伤的影响 [J]. 科学技术与工程, 2018, 18(21): 339–344. DOI: 10.3969/j.issn.1671-1815.2018.21.053.

    YU T, WANG X H, ZHOU Y B, et al. The effects of vehicle floor acceleration on the damage of occupant's tibia in explosive environment [J]. Science Technology and Engineering, 2018, 18(21): 339–344. DOI: 10.3969/j.issn.1671-1815.2018.21.053.
    [8] 梁锐, 黄世霖, 杜汇良, 等. 高G值复合着陆冲击下头、颈部损伤成因 [J]. 中国临床康复, 2005, 9(25): 28–30. DOI: 10.3321/j.issn:1673-8225.2005.25.014.

    LIANG R, HUANG S L, DU H L, et al. Causes of head and neck injury under high G landing impact [J]. Chinese Journal of Clinical Rehabilitation, 2005, 9(25): 28–30. DOI: 10.3321/j.issn:1673-8225.2005.25.014.
    [9] North Atlantic Treaty Organization. Procedures for evaluating the protection level of armored vehicles-mine threat: AEP-55: Volume 2[S]. Brussels: Allied Engineering Publication, 2011.
    [10] 通过载人航天器发射、中止、着陆引起的伤害来确定NASA风险准则[J]. 载人航天信息, 2015(2): 1−13.

    Determine NASA risk criteria through injuries caused by manned spacecraft launch, suspension, and landing[J]. Manned Spaceflight Information, 2015(2): 1−13.
    [11] ECE UN. Uniform provision concerning the approval of vehicles with regard to the emission of pollutants according to engine fuel requirements [J]. UN ECE Regulation, 2005(83).
    [12] VIANO D C, AREPALLY S. Assessing the safety performance of occupant restraint systems [M]. DOI: 10.4271/902328.
    [13] BROWN W K, ROTHSTEIN J D, FOSTER P. Human response to predicted Apollo landing impacts in selected body orientations [J]. Aerospace Medicine, 1966, 37(4): 394–398.
    [14] TABIEI A, LAWRENCE C, FASANELLA E L. Validation of finite element crash test dummy models for predicting orion crew member injuries during a simulated vehicle landing: NASA TM-2009-215476 [R]. 2009.
    [15] 王心怡, 刘晓颖, 陈聪, 等. 跌落工况下的人体腰椎损伤风险的几种影响因素 [J]. 汽车安全与节能学报, 2018, 9(2): 178–185. DOI: 10.3969/j.issn.1674-8484.2018.02.008.

    WANG X Y, LIU X Y, CHEN C, et al. Factors for affecting risk of human lumbar spine injuries under dropping conditions [J]. Journal of Automotive Safety and Energy, 2018, 9(2): 178–185. DOI: 10.3969/j.issn.1674-8484.2018.02.008.
    [16] SIMPSON T M, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization [J]. AIAA Journal, 2001, 39(12): 2233–2241. DOI: 10.2514/2.1234.
  • 加载中
图(13) / 表(9)
计量
  • 文章访问数:  603
  • HTML全文浏览量:  264
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-19
  • 修回日期:  2020-06-22
  • 刊出日期:  2021-01-05

目录

    /

    返回文章
    返回