Q420钢管大气腐蚀后的抗侧撞性能

旷金鑫 张春涛 郝志明 李洪祥

旷金鑫, 张春涛, 郝志明, 李洪祥. Q420钢管大气腐蚀后的抗侧撞性能[J]. 爆炸与冲击, 2021, 41(2): 023303. doi: 10.11883/bzycj-2020-0090
引用本文: 旷金鑫, 张春涛, 郝志明, 李洪祥. Q420钢管大气腐蚀后的抗侧撞性能[J]. 爆炸与冲击, 2021, 41(2): 023303. doi: 10.11883/bzycj-2020-0090
KUANG Jinxin, ZHANG Chuntao, HAO Zhiming, LI Hongxiang. Lateral impact resistance of Q420 steel tubes after atmospheric corrosion[J]. Explosion And Shock Waves, 2021, 41(2): 023303. doi: 10.11883/bzycj-2020-0090
Citation: KUANG Jinxin, ZHANG Chuntao, HAO Zhiming, LI Hongxiang. Lateral impact resistance of Q420 steel tubes after atmospheric corrosion[J]. Explosion And Shock Waves, 2021, 41(2): 023303. doi: 10.11883/bzycj-2020-0090

Q420钢管大气腐蚀后的抗侧撞性能

doi: 10.11883/bzycj-2020-0090
基金项目: 国家自然科学基金(51508482,51568058);西藏自治区科技计划(CGZH2018000014)
详细信息
    作者简介:

    旷金鑫(1993- ),男,硕士研究生,1308765668@qq.com

    通讯作者:

    张春涛(1983- ),男,博士,副教授,zhangchuntao1@126.com

  • 中图分类号: O347

Lateral impact resistance of Q420 steel tubes after atmospheric corrosion

  • 摘要: 为研究大气腐蚀对Q420钢管构件服役期内耐撞性的影响,提出了计及腐蚀损伤的材料模型。引入损伤因子(ω)修正Voce模型,推导随腐蚀程度变化的低合金钢材本构方程,并通过加速腐蚀试验结果回归相应参数。利用ABAQUS软件定义构件材料特性,建立起受腐蚀的Q420钢管仿真模型,采用显式动力算法分析多种初始状态下,撞击体与不同腐蚀程度钢管的冲击响应规律。开展预腐蚀Q420钢管的落锤试验,将试验结果与数值计算结果进行对比,验证所建模型的合理性。结果表明:大气腐蚀导致材料名义强度降低,对Q420钢管抗撞击能力影响显著;随着腐蚀程度增加,冲击力峰值减小,撞击时间和深度增加;Q420钢管受腐蚀后抗冲击刚度减小,构件整体变形耗能增加,表明大气腐蚀使其抗冲击性能下降;同等动能增量下,增大撞击体初速度比增加初始质量获得的冲击力峰值增幅更大,而所得到的接触时间增幅更小。
  • 图  1  材性试件设计(单位:mm)

    Figure  1.  Material test piece design (unit: mm)

    图  2  重力式落锤冲击试验装置

    Figure  2.  Gravity drop hammer impact test device

    图  3  试件边界条件示意图

    Figure  3.  Schematic diagram of boundary conditions of specimens

    图  4  不同腐蚀程度的试件表面

    Figure  4.  Specimen surface with different degrees of corrosion

    图  5  计及腐蚀损伤的Q420低合金钢材本构曲线

    Figure  5.  Constitutive curve of Q420 low alloy steel considering corrosion damage

    图  6  冲击变形过程示意图

    Figure  6.  Impact deformation process

    图  7  不同腐蚀程度的冲击变形对比

    Figure  7.  Comparison of impact deformation of different degrees of corrosion

    图  8  仿真模型及网格划分

    Figure  8.  Simulation model and mesh

    图  9  v=5.97 m/s时冲击力响应计算结果与试验结果对比

    Figure  9.  Comparison of impact force calculation results and test results at v=5.97 m/s

    图  10  相同冲击条件下不同腐蚀程度的钢管模型变形

    Figure  10.  Deformation of steel tube model with various degrees of corrosion under the same impact conditions

    图  11  不同腐蚀程度的冲击力-撞深关系曲线

    Figure  11.  Impact force-depth relation curves with different corrosion degrees

    图  12  钢管构件的刚度退化情况

    Figure  12.  Stiffness degradation of steel tube components

    图  13  不同腐蚀损伤程度下的冲击能耗趋势

    Figure  13.  Trend of impact energy consumptionunder different corrosion damages

    图  14  腐蚀程度d=0%下的撞击深度-时间曲线

    Figure  14.  Impact depth-time curves at d=0%

    图  15  不同腐蚀程度和初始速度下的冲击力时程曲线

    Figure  15.  Time-history curves of impact forces at different corrosion degrees and initial velocities

    图  16  不同冲击条件下的响应规律对比

    Figure  16.  Comparison of response lawsunder different impact conditions

    表  1  落锤试验工况

    Table  1.   Drop hammer test conditions

    腐蚀程度/% 试件编号 初始高度/m 冲击能量/J 腐蚀程度/% 试件编号 初始高度/m 冲击能量/J
    0 C0H1 0.82 439.57 30 C3H1 0.82 439.57
    C0H2 1.82 975.63 C3H2 1.82 975.63
    C0H3 2.82 1 511.69 C3H3 2.82 1 511.69
    10 C1H1 0.82 439.57 40 C4H1 0.82 439.57
    C1H2 1.82 975.63 C4H2 1.82 975.63
    C1H3 2.82 1 511.69 C4H3 2.82 1 511.69
    20 C2H1 0.82 439.57
    C2H2 1.82 975.63
    C2H3 2.82 1 511.69
    下载: 导出CSV

    表  2  静力拉伸材料力学性能

    Table  2.   Static tensile properties of mechanical properties

    腐蚀程度/% 名义屈服强度/MPa 名义极限抗拉强度/MPa 极限应变/% 弹性模量/GPa 伸长率/%
    0 446.43 650.90 39.97 206.85 33.37
    10 410.80 545.22 37.37 189.78 27.53
    20 354.33 488.49 32.00 166.44 23.08
    30 319.40 454.46 28.97 151.14 22.43
    40 276.39 358.53 20.21 133.74 18.31
    下载: 导出CSV

    表  3  材性参数预测模型计算结果与试验结果对比

    Table  3.   Comparison of calculation results and test results of material parameters prediction model

    腐蚀程度/% 试验屈服强度/MPa 预测屈服强度/MPa 误差/% 试验极限抗拉强度/MPa 预测极限抗拉强度/MPa 误差/%
    0 446.43 454.79 1.87 650.90 645.44 −0.84
    10 410.80 404.31 −1.58 545.22 572.23 4.95
    20 354.33 359.39 1.43 488.49 506.99 3.79
    30 319.40 319.41 0 454.46 448.91 −1.22
    40 276.39 283.84 2.70 358.53 397.27 8.02
    下载: 导出CSV

    表  4  落锤试验工况

    Table  4.   Drop hammer test conditions

    试件编号 冲击力峰值/kN 作用时间/ms 撞击深度/mm 底部挠曲/mm 试件编号 冲击力峰值/kN 作用时间/ms 撞击深度/mm 底部挠曲/mm
    C0H1 110.13 5.20 2.32 0.87 C2H3 103.56 7.65 13.91 4.20
    C0H2 123.41 5.25 6.30 1.67 C3H1 59.77 7.68 5.94 1.67
    C0H3 136.28 6.56 8.33 2.97 C3H2 82.03 7.41 11.74 2.75
    C1H1 87.23 5.74 2.97 1.09 C3H3 96.83 8.86 16.81 4.57
    C1H2 107.35 6.40 7.10 2.03 C4H1 47.99 8.60 7.39 1.96
    C1H3 112.93 7.40 11.52 3.41 C4H2 72.09 8.69 15.43 2.97
    C2H1 69.49 6.42 5.00 1.38 C4H3 84.33 9.38 21.52 5.00
    C2H2 95.01 6.85 9.64 2.46
    下载: 导出CSV
  • [1] JONES N, BIRCH R S. Low-velocity impact of pressurized pipelines [J]. International Journal of Impact Engineering, 2010, 37(2): 207–219. DOI: 10.1016/j.ijimpeng.2009.05.006.
    [2] 茹重庆, 王仁. 关于冲击载荷下圆柱壳塑性屈曲的两个问题 [J]. 固体力学学报, 1988(1): 64–68.

    RU C Q, WANG R. On two problems of plastic buckling of cylindrical shell under impulsive loading [J]. Acta Mechanica Solida Sinica, 1988(1): 64–68.
    [3] 程国强, 雷建平, 张善元. 经受侧向撞击圆管的大变形分析 [J]. 固体力学学报, 2000, 21(1): 57–60. DOI: 10.3969/j.issn.0254-7805.2000.01.008.

    CHENG G Q, LEI J P, ZHANG S Y. Large deformation analysis of circular tubes under lateral impact [J]. Acta Mechanica Solida Sinica, 2000, 21(1): 57–60. DOI: 10.3969/j.issn.0254-7805.2000.01.008.
    [4] ZHANG R, ZHI X D, FAN F. Plastic behavior of circular steel tubes subjected to low-velocity transverse impact [J]. International Journal of Impact Engineering, 2018, 114: 1–19. DOI: 10.1016/j.ijimpeng.2017.12.003.
    [5] 朱翔, 刘宏, 陆新征, 等. 钢骨混凝土构件抗冲击性能试验研究 [J]. 爆炸与冲击, 2019, 39(11): 115102. DOI: 10.11883/bzycj-2018-0500.

    ZHU X, LIU H, LU X Z, et al. Experimental study on impact resistance of steel reinforced concrete members [J]. Explosion and Shock Waves, 2019, 39(11): 115102. DOI: 10.11883/bzycj-2018-0500.
    [6] 郝志明, 陈裕泽, 陈刚, 等. 横向撞击下短梁的剪切破坏研究 [J]. 爆炸与冲击, 2002, 22(1): 52–55.

    HAO Z M, CHEN Y Z, CHEN G, et al. Shear failure of beams under transverse impact [J]. Explosion and Shock Waves, 2002, 22(1): 52–55.
    [7] YOUSUF M, UY B, TAO Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns [J]. Journal of Constructional Steel Research, 2013, 82: 177–189. DOI: 10.1016/j.jcsr.2013.01.005.
    [8] RYU D M, WANG L, KIM S K, et al. Comparative study on deformation and mechanical behavior of corroded pipe: Part Ⅰ–numerical simulation and experimental investigation under impact load [J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(5): 509–524. DOI: 10.1016/j.ijnaoe.2017.01.005.
    [9] JIANG X L, SOARES C G. Nonlinear FEM analysis of pitted mild steel square plate subjected to in-plane compression [J]. Journal of Ship Mechanics, 2009, 13(3): 398–405. DOI: 10.3969/j.issn.1007-7294.2009.03.009.
    [10] 张健, 沈中祥, 王自力, 等. 腐蚀损伤对深海半潜式平台结构极限强度的影响研究 [J]. 船舶力学, 2012, 16(11): 1283–1290. DOI: CNKI:SUN:CBLX.0.2012-11-008.

    ZHANG J, SHEN Z X, WANG Z L, et al. Influence research ultimate strength to deepwater semi-submersible platforms structure under corrosion damage [J]. Journal of Ship Mechanics, 2012, 16(11): 1283–1290. DOI: CNKI:SUN:CBLX.0.2012-11-008.
    [11] KHEDMATI M R, ROSHANALI M M, NOURI Z H M E. Strength of steel plates with both-sides randomly distributed with corrosion wastage under uniaxial compression [J]. Thin-Walled Structures, 2011, 49(2): 325–342. DOI: 10.1016/j.tws.2010.10.002.
    [12] 陈梦成, 林博洋, 黄宏. 酸雨腐蚀后圆钢管混凝土柱抗震性能研究 [J]. 铁道科学与工程学报, 2017, 14(1): 142–148. DOI: 10.3969/j.issn.1672-7029.2017.01.021.

    CHEN M C, LIN B Y, HUANG H. A study of seismic performance for circular concrete filled steel tubular column under acid rain attack [J]. Journal of Railway Science and Engineering, 2017, 14(1): 142–148. DOI: 10.3969/j.issn.1672-7029.2017.01.021.
    [13] 黄宏, 胡志慧, 杨超, 等. 模拟酸雨环境下圆钢管再生混凝土纯弯试验研究 [J]. 应用力学学报, 2019, 36(1): 97–103, viii. DOI: 10.11776/cjam.36.01.B114.

    HUANG H, HU Z H, YANG C, et al. Experimental study of recycled concrete-filled circle steel tubes subjected to pure bending under the environment of acid rain [J]. Chinese Journal of Applied Mechanics, 2019, 36(1): 97–103, viii. DOI: 10.11776/cjam.36.01.B114.
    [14] KACHANOV M. On the time to failure under creep conditions [J]. AN SSSR, Otd. Tekhn. Nauk, 1958, 8(26–31): 8.
    [15] RABOTNOV Y N. On the equation of state of creep [C] // Proceedings of the Institution of Mechanical Engineers. London, England: SAGE Publications, 1963, 178(31): 117–122. DOI: 10.1243/PIME_CONF1963_178_030_02.
    [16] 史炜洲, 童乐为, 陈以一, 等. 腐蚀对钢材和钢梁受力性能影响的试验研究 [J]. 建筑结构学报, 2012, 33(7): 53–60. DOI: CNKI:SUN:JZJB.0.2012-07-007.

    SHI Y Z, TONG L W, CHEN Y Y, et al. Experimental study on influence of corrosion on behavior of steel material and steel beams [J]. Journal of Building Structures, 2012, 33(7): 53–60. DOI: CNKI:SUN:JZJB.0.2012-07-007.
    [17] 郑山锁, 左英, 张晓辉, 等. 酸性大气环境下多龄期平面钢框架结构抗震性能试验研究 [J]. 工程力学, 2017, 34(9): 73–82. DOI: CNKI:SUN:GCLX.0.2017-09-010.

    ZHENG S S, ZUO Y, ZHANG X H, et al. Experimental research on the seismic behavior of multi-aged plane steel frames under acidic atmospheric environment [J]. Engineering Mechanics, 2017, 34(9): 73–82. DOI: CNKI:SUN:GCLX.0.2017-09-010.
    [18] VOCE E. The relationship between stress and strain for homogeneous deformation [J]. Journal of the Institute of Metals, 1947, 73: 537–562.
    [19] 金属材料—拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2010 [S]. 北京: 中国标准出版社, 2012.
    [20] 陈俊岭, 李金威, 李哲旭. Q420钢材应变硬化与应变率效应的试验 [J]. 同济大学学报(自然科学版), 2017, 45(2): 180–187. DOI: 10.11908/j.issn.0253-374x.2017.02.004.

    CHEN J L, LI J W, LI Z X. Experimental study on strain hardening and strain rate effect of Q420 steel [J]. Journal of Tongji University (Natural Science), 2017, 45(2): 180–187. DOI: 10.11908/j.issn.0253-374x.2017.02.004.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  318
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-05-28
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回