球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型

姚熊亮 王治 叶墡君 吴子奇 王志凯

姚熊亮, 王治, 叶墡君, 吴子奇, 王志凯. 球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型[J]. 爆炸与冲击, 2021, 41(3): 033301. doi: 10.11883/bzycj-2020-0092
引用本文: 姚熊亮, 王治, 叶墡君, 吴子奇, 王志凯. 球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型[J]. 爆炸与冲击, 2021, 41(3): 033301. doi: 10.11883/bzycj-2020-0092
YAO Xiongliang, WANG Zhi, YE Shanjun, WU Ziqi, WANG Zhikai. A simplified theoretical model for attack angle change of a hemispherically-nosed projectile while penetrating the stiffener of a ship plate frame[J]. Explosion And Shock Waves, 2021, 41(3): 033301. doi: 10.11883/bzycj-2020-0092
Citation: YAO Xiongliang, WANG Zhi, YE Shanjun, WU Ziqi, WANG Zhikai. A simplified theoretical model for attack angle change of a hemispherically-nosed projectile while penetrating the stiffener of a ship plate frame[J]. Explosion And Shock Waves, 2021, 41(3): 033301. doi: 10.11883/bzycj-2020-0092

球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型

doi: 10.11883/bzycj-2020-0092
基金项目: 国家自然科学基金(52001091,51779056);黑龙江省自然科学基金(E2017026)
详细信息
    作者简介:

    姚熊亮(1963- ),男,博士,教授,xiongliangyao@hrbeu.edu.cn

    通讯作者:

    王 治(1985- ),男,博士,讲师,wang_z@hrbeu.edu.cn

  • 中图分类号: O385

A simplified theoretical model for attack angle change of a hemispherically-nosed projectile while penetrating the stiffener of a ship plate frame

  • 摘要: 舰船板架结构加强筋对于弹体侵彻着角与攻角变化有较大影响,而目前对此尚无理论模型。本文开展板架加强筋对弹体攻角变化的理论研究。针对刚性球头弹体侵彻舰船板架结构加强筋问题,将加强筋简化为刚塑性梁模型,建立了侵彻过程力学模型,给出了弹体剩余速度、着角和攻角变化的求解公式。公式表明弹体攻角与着角的变化与弹体初始速度、初始着角、初始攻角以及加强筋极限弯矩有关。通过编程求解理论公式,发现初始着角对于侵彻结束攻角和着角变化的影响大于初始攻角;初始着角超过某一值后,攻角改变会急剧增大,而当初始着角超过另一极限值后会发生弹体跳飞;初始速度越高,弹体侵彻结束后着角和攻角变化越小;加强筋的极限弯矩对弹体攻角改变有较大影响。
  • 图  1  着角与攻角示意图

    Figure  1.  Schematic diagram of impact angle and attack angle

    图  2  弹体侵彻板架结构示意图与简化模型

    Figure  2.  The diagrammatic sketch and simplified model for a projectile penetrating a ship plate frame

    图  3  加强筋运动速度场

    Figure  3.  Velocity field of the stiffener

    图  4  弹体质心位移

    Figure  4.  Displacement of the mass center of the projectile

    图  5  侵彻结束后弹体质心速度

    Figure  5.  Centroid velocity of the projectile after penetration

    图  6  实验靶标示意图[13]

    Figure  6.  Schematic diagram of the experimental target[13]

    图  7  侵彻过程中Δα随时间变化曲线

    Figure  7.  Time varying curves of Δα in the penetration process

    图  8  侵彻结束时转角改变Δαm与初始攻角的关系

    Figure  8.  Relationship between the change of rotation angle and the initial attack angle

    图  9  侵彻结束时着角改变Δβm与初始攻角的关系

    Figure  9.  Relationship between the change of impact angle and the initial attack angle

    图  10  飞行至下层甲板时攻角变化Δφ与初始攻角的关系

    Figure  10.  Relationship between the change of attack angle Δφ at the next deck and the initial attack angle

    图  11  剩余速度随初始攻角变化图

    Figure  11.  Residual velocity versus initial attack angle

    图  12  侵彻结束时转角改变Δαm与初始着角的关系

    Figure  12.  Relationship between the change of rotation angle and the initial impact angle

    图  13  飞行至下层甲板时攻角变化Δφ与初始着角的关系

    Figure  13.  Relationship between the change of attack angle Δφ at the next deck and the initial impact angle

    图  14  初始速度对着角改变的影响

    Figure  14.  The influence of initial velocity on the change of impact angle

    图  15  初始速度对飞行至下层甲板时攻角变化Δφ的影响

    Figure  15.  The influence of initial velocity on the change of attack angle Δφ at the next deck

    图  16  梁的极限弯矩M0对着角和攻角改变的影响

    Figure  16.  The influence of the ultimate moment of the beam on the changes of impact angle and attack angle

    表  1  板架结构与弹体材料参数

    Table  1.   Material parameters of the plate frame and the projectile

    材料型号密度/(kg·m−3弹性模量/GPa泊松比屈服应力/MPa硬化模量/GPaDp
    921A7 8502020.306851.0608 0000.8
    30CrMnSiNi2A7 8505170.281 6000.5944 3220.2
    下载: 导出CSV

    表  2  板架结构参数表

    Table  2.   Structural parameters of the plate frame

    板厚/mm纵骨横梁
    尺寸/mm间距/m尺寸/mm间距/m
    8$\bot \dfrac{ { {\rm{115} } \times 1{\rm{5} } } }{ {1{\rm{00} } \times {\rm{15} } } }$0.6$\bot \dfrac{ {200 \times 6} }{ {80 \times 8} }$1.2
    下载: 导出CSV

    表  3  数值与理论剩余速度结果比对

    Table  3.   Comparison of the numerical and theoretical results of the residual velocity

    v0/(m∙s−1β0/(°)φ0/(°)Δv/(m∙s−1
    理论数值误差/%
    75010514.6416.5911.8
    75020514.7816.8812.4
    75030514.9817.5214.5
    75040515.3418.8318.5
    75050516.1119.1315.8
    750401015.4217.9914.3
    650401018.3520.7911.7
    550401023.0425.5910.0
    下载: 导出CSV

    表  4  数值与理论着角结果比对

    Table  4.   Comparison of the numerical and theoretical results of the impact angle

    v0/(m∙s−1)β0/(°)φ0/(°)Δβm/(°)
    理论数值误差/%
    7501050.230.2015.0
    7502050.440.3912.8
    7503050.750.70 7.2
    7504051.070.98 9.2
    7505051.511.3115.3
    75040101.020.97 5.2
    65040101.431.32 8.3
    55040102.142.01 6.5
    45040102.512.39 5.0
    下载: 导出CSV

    表  5  数值与理论攻角结果比对

    Table  5.   Comparison of the numerical and theoretical results of the attack angle

    v0/(m∙s−1)β0/(°)φ0/(°)Δφ/(°)
    理论数值误差/%
    7501050.080.0714.3
    7502050.170.166.3
    7503050.190.185.6
    7504050.230.2015.0
    7505052.011.924.7
    75040100.430.47.5
    65040101.211.155.2
    55040104.984.569.2
    45040105.355.212.7
    下载: 导出CSV

    表  6  靶标板架结构参数[13]

    Table  6.   Structural parameters of the target frame[13]

    靶板材料板厚纵骨截面积横梁截面积纵骨间距横梁间距
    第1层907At34.4t291.9t2δl3.65δl
    第2层921A2t34.4t291.9t2δl3.65δl
    第3层907At34.4t291.9t2δl3.65δl
    第4层907At34.4t291.9t2δl3.65δl
    下载: 导出CSV

    表  7  试验与理论结果比对

    Table  7.   Comparison of experimental and theoretical results

    靶板侵彻后无量纲剩余速度${v_{\rm{r}}}/{v_0}$弹体着靶姿态角$(\varphi + \beta )$/(°)
    实验[13]理论误差实验[13]理论误差
    第1层0.96942.842.80%
    第2层0.9380.9592.2%48.3
    第3层0.8920.9102.0%50.855.28.7%
    第4层0.8680.8710.3%59.666.311.2%
    下载: 导出CSV
  • [1] 钱伟长. 穿甲力学[M]. 北京: 国防工业出版社, 1984.
    [2] ANDERSON C E. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108(10): 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [3] 张中国, 黄风雷, 段卓平, 等. 弹体侵彻带加强筋结构靶的实验研究 [J]. 爆炸与冲击, 2004, 24(5): 431–436.

    ZHANG Z G, HUANG F L, DUAN Z P, et al. The experimental research for projectile penetrating the structural target with rebar [J]. Explosion and Shock Waves, 2004, 24(5): 431–436.
    [4] 段卓平. 半穿甲弹丸对加筋靶板侵彻的终点弹道的实验和理论研究 [J]. 爆炸与冲击, 2005, 25(6): 547–552. DOI: 10.11883/1001-1455(2005)06-0547-06.

    DUAN Z P. The experimental and theoretical research for end-point trajectory of warhead penetrating ribbings structural target [J]. Explosion and Shock Waves, 2005, 25(6): 547–552. DOI: 10.11883/1001-1455(2005)06-0547-06.
    [5] 段卓平, 张中国, 李金柱, 等. 半穿甲战斗部对加筋靶板和均质靶板垂直侵彻的实验研究 [J]. 弹箭与制导学报, 2005, 25(2): 148–150,157. DOI: 10.3969/j.issn.1673-9728.2005.02.051.

    DUAN Z P, ZHANG Z G, LI J Z, et al. The experimental research for warhead vertically penetrating homogeneous and ribbings structural target [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(2): 148–150,157. DOI: 10.3969/j.issn.1673-9728.2005.02.051.
    [6] 姚熊亮, 吴子奇, 王治, 等. 战斗部对舰船靶标侵彻毁伤效能研究 [J]. 哈尔滨工程大学学报, 2019, 40(1): 141–145. DOI: 10.11990/jheu.201808002.

    YAO X L, WU Z Q, WANG Z, et al. Study on damage effectiveness of warhead on ship target [J]. Journal of Harbin Engineering University, 2019, 40(1): 141–145. DOI: 10.11990/jheu.201808002.
    [7] 宋卫东, 宁建国, 张中国, 等. 多层加筋靶板的侵彻模型与等效方法 [J]. 弹道学报, 2004(3): 54–59. DOI: 10.3969/j.issn.1004-499X.2004.03.010.

    SONG W D, NING J G, ZHANG Z G, et al. Penetration model and equivalence method of multi-layered stiffened plates [J]. Journal of Ballistics, 2004(3): 54–59. DOI: 10.3969/j.issn.1004-499X.2004.03.010.
    [8] 宋卫东, 宁建国. 刚性弹体侵彻加筋靶板的力学模型 [J]. 弹道学报, 2007(4): 47–50. DOI: 10.3969/j.issn.1004-499X.2007.04.012.

    SONG W D, NING J G. Mechanical model of rigid projectile penetrating stiffened plates [J]. Journal of Ballistics, 2007(4): 47–50. DOI: 10.3969/j.issn.1004-499X.2007.04.012.
    [9] 展婷变, 吕淑芳, 黄德雨. 截卵形弹体正侵彻加强筋结构靶的理论分析 [J]. 弹道学报, 2012(1): 52–57. DOI: 10.3969/j.issn.1004-499X.2012.01.011.

    ZHAN T B, LV S F, HUANG D Y. Theoretical analysis on normal penetration of truncated oval-nosed projectile into stiffened plate [J]. Journal of Ballistics, 2012(1): 52–57. DOI: 10.3969/j.issn.1004-499X.2012.01.011.
    [10] 巨圆圆, 张庆明. 尖卵形弹丸侵彻加筋薄靶剩余速度的理论分析 [J]. 兵工学报, 2015, 36(S1): 126–130.

    JU Y Y, ZHANG Q M. Theoretical analysis on residual velocity of oval-nosed projectile penetrating into stiffened thin plate [J]. Acta Armamentarii, 2015, 36(S1): 126–130.
    [11] 徐双喜, 吴卫国, 李晓彬, 等. 截锥形弹穿甲单加筋板的破坏特性 [J]. 爆炸与冲击, 2011, 31(1): 65–71. DOI: 10.11883/1001-1455(2011)01-0062-07.

    XU S X, WU W G, LI X B, et al. Falure characteristics of a conical projectile penetrating single stiffened plate [J]. Explosion and Shock Waves, 2011, 31(1): 65–71. DOI: 10.11883/1001-1455(2011)01-0062-07.
    [12] NORMAM J著. 结构冲击[M]. 2版. 许俊, 蒋平,译. 北京: 国防工业出版社, 2018: 72−79.
    [13] 吴子奇. 弹目结合的反舰导弹对目标舰船靶标侵彻毁伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  722
  • HTML全文浏览量:  435
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 修回日期:  2020-11-29
  • 网络出版日期:  2021-01-25
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回