水下爆炸中气泡射流壁压特性实验研究

崔雄伟 陈莹玉 苏标 马春龙

崔雄伟, 陈莹玉, 苏标, 马春龙. 水下爆炸中气泡射流壁压特性实验研究[J]. 爆炸与冲击, 2020, 40(11): 111404. doi: 10.11883/bzycj-2020-0106
引用本文: 崔雄伟, 陈莹玉, 苏标, 马春龙. 水下爆炸中气泡射流壁压特性实验研究[J]. 爆炸与冲击, 2020, 40(11): 111404. doi: 10.11883/bzycj-2020-0106
CUI Xiongwei, CHEN Yingyu, SU Biao, MA Chunlong. Characteristics of wall pressure generated by bubble jets in an underwater explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111404. doi: 10.11883/bzycj-2020-0106
Citation: CUI Xiongwei, CHEN Yingyu, SU Biao, MA Chunlong. Characteristics of wall pressure generated by bubble jets in an underwater explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111404. doi: 10.11883/bzycj-2020-0106

水下爆炸中气泡射流壁压特性实验研究

doi: 10.11883/bzycj-2020-0106
基金项目: 国家自然科学基金(51779056);四川省科技厅重点研发项目(2018GZ0514)
详细信息
    作者简介:

    崔雄伟(1988- ),男,博士,讲师,Xiongwei_Cui@hrbeu.edu.cn

    通讯作者:

    陈莹玉(1991- ),女,博士,讲师,chenyingyu@hrbeu.edu.cn

  • 中图分类号: O382.1

Characteristics of wall pressure generated by bubble jets in an underwater explosion

  • 摘要: 水下爆炸气泡射流载荷是中近场水下爆炸壁压载荷的重要组成部分, 将水下爆炸气泡射流简化为一段高速水柱来研究水下爆炸气泡射流载荷特性是研究水下爆炸气泡射流载荷的主要手段。本文基于腔内爆炸提出了一种新的高速水射流实验方法,并给出了实验装置设计、实验方法以及实验系统。基于实验系统,开展了不同工况下高速水射流的实验研究,研究了腔口位置、腔深对水射流形态的影响,并对水射流的形态形成因素进行了分析。使用压电型壁压传感器测得了水射流冲击壁压,给出了水射流冲击壁压的特性及其特点。实验结果表明:腔口位置与腔深是影响水射流端面形态的重要因素;生成的高速水射流冲击壁压峰值满足水锤理论。基于腔内爆炸的高速水射流实验方法能够应用于包括水下爆炸气泡射流在内的高速水射流形态、壁压特性的研究。
  • 图  1  高速水射流生成示意图

    Figure  1.  Diagrammatic sketch of the generation of high-speed water jet

    图  2  高速水射流实验装置

    Figure  2.  Experimental apparatus of the high-speed water jet generation

    图  3  高速水射流实验设置

    Figure  3.  Set-up of high-speed water jet experiments

    图  4  高速水射流实验系统

    Figure  4.  Experimental configuration of high-speed water jet system

    图  5  工况SZP1高速水柱运动形态

    Figure  5.  Morphology evolution of the high-speed water column with case SZP1

    图  6  工况SZP1高速水柱运动形态示意图

    Figure  6.  Schematic diagram of the high-speed water column morphology with case SZP1

    图  7  工况SZP2水柱运动形态

    Figure  7.  Morphology evolution of the high-speed water column with case SZP2

    图  8  工况SZP2高速水柱运动形态示意图

    Figure  8.  Schematic diagram of the high speed water column morphology with case SZP2

    图  9  3种腔深圆管

    Figure  9.  Three kinds of tubes with different lengths

    图  10  工况SZP3高速水柱运动形态

    Figure  10.  Morphology evolution of the high-speed water column with case SZP3

    图  11  工况SZP4高速水柱运动形态

    Figure  11.  Morphology evolution of the high-speed water column with case SZP4

    图  12  实验SZM1水柱运动图像

    Figure  12.  Morphology evolution of the high-speed water column with test SZM1

    图  13  实验SZM1高速水射流冲击壁压

    Figure  13.  Pressure generated by high-speed water impact with test SZM1

    图  14  工况SZM2水柱运动形态

    Figure  14.  Morphology evolution of the high speed water column with test SZM2

    图  15  工况SZM3水柱运动形态

    Figure  15.  Morphology evolution of the high speed water column with test SZM3

    图  16  实验SZM2、SZM3高速水射流冲击壁压

    Figure  16.  Pressure generated by the high speed water impact with test SZM2 and SZM3

    表  1  高速水射流形态

    Table  1.   Morphology of the high speed water column

    腔口位置腔深/mm高速水射流形态
    腔口高于水面高速水射流端面中部形成尖突
    腔口低于水面 75水柱长度较短,且在后期受到爆炸气体产物喷出的影响,水柱出现破碎
    腔口低于水面150水射流水柱存在间断,且水柱表面存在破碎,高速水射流端面呈现椭球形曲面
    腔口低于水面300水柱较长、连续性较好、水柱表面较光滑,高速水射流端面呈现椭球形曲面
    下载: 导出CSV

    表  2  实验SZM1水柱端面位置

    Table  2.   Position of the head face of water column with test SZM1

    采样时间/ms水柱端面位置/mm
    −1.20−12.85
    −0.08−8.55
    −0.04−4.30
    00
    下载: 导出CSV

    表  3  工况SZM2、SZM3水柱端面位置

    Table  3.   Position of the head face of water column with tests SZM2 and SZM3

    采样时间/ms水柱端面位置/mm
    SZM2SZM3
    −1.20−12.80−12.75
    −0.08−8.53−8.50
    −0.04−4.25−4.30
    000
    下载: 导出CSV

    表  4  实验SZM1、SZM2、SZM3初始水锤压力峰值对比

    Table  4.   Comparison of initial water hammer pressure peaks with tests SZM1, SZM2 and SZM3

    实验冲击速度/
    (m·s−1
    理论峰值/
    MPa
    实测峰值/
    MPa
    相对误差/
    %
    SZM1107.080.2577.53.43
    SZM2106.579.8874.37.00
    SZM3106.079.5076.04.40
    平均106.579.8875.94.98
    下载: 导出CSV
  • [1] CARLUCHO I, DE PAULA M, WANG S, et al. Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning [J]. Robotics and Autonomous Systems, 2018, 107: 71–86. DOI: 10.1016/j.robot.2018.05.016.
    [2] EL-FAKDI A, CARRERAS M. Two-step gradient-based reinforcement learning for underwater robotics behavior learning [J]. Robotics and Autonomous Systems, 2013, 61(3): 271–282. DOI: 10.1016/j.robot.2012.11.009.
    [3] WANG X M, JIA J, YIN J W, et al. Underwater sonar image classification using adaptive weights convolutional neural network [J]. Applied Acoustics, 2019, 146: 145–154. DOI: 10.1016/j.apacoust.2018.11.003.
    [4] 崔杰. 近场水下爆炸气泡载荷及对结构毁伤试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 1−10.

    CUI J. Experimental study on underwater explosion bubble loads and damage on the structure nearby [D]. Harbin: Harbin Engineering University, 2013: 1−10.
    [5] 张阿漫. 水下爆炸气泡三维动态特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2007: 156−196.

    ZHANG A M. 3D dynamic behavior of underwater explosion bubble [D]. Harbin: Harbin Engineering University, 2007: 156−196.
    [6] WANG Q X. Non-spherical bubble dynamics of underwater explosions in a compressible fluid [J]. Physics of Fluids, 2013, 25(7): 072104. DOI: 10.1063/1.4812659.
    [7] LIU L T, YAO X L, ZHANG A M, et al. Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method [J]. Physics of Fluids, 2017, 29(1): 012105. DOI: 10.1063/1.4974073.
    [8] 明付仁. 水下近场爆炸对舰船结构瞬态流固耦合毁伤特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2014: 6−12.

    MING F R. Damage characteristics of transient fluid-structure interaction of warship structures subjected to near-field underwater explosion [D]. Harbin: Harbin Engineering University, 2014: 6−12.
    [9] HUANG Y C, HAMMITT F G, YANG W J. Hydrodynamic phenomena during high-speed collision between liquid droplet and rigid plane [J]. Journal of Fluids Engineering, 1973, 95(2): 276–292. DOI: 10.1115/1.3447017.
    [10] HSU C Y, LIANG C C, NGUYEN A T, et al. A numerical study on the underwater explosion bubble pulsation and the collapse process [J]. Ocean Engineering, 2014, 81: 29–38. DOI: 10.1016/j.oceaneng.2014.02.018.
    [11] PLESSET M S, CHAPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics, 1971, 47(2): 283–290. DOI: 10.1017/S0022112071001058.
    [12] BLAKE J R, GIBSON D C. Cavitation bubbles near boundaries [J]. Annual Review of Fluid Mechanics, 1987, 19: 99–123. DOI: 10.1146/annurev.fl.19.010187.000531.
    [13] HUANG C F, HWANGFU J J. Experimental study of the behavior of mini-charge underwater explosion bubbles near different boundaries [J]. Journal of Fluid Mechanics, 2010, 651: 55–80. DOI: 10.1017/s0022112009993776.
    [14] LAUTERBORN W, BOLLE H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics, 1975, 72: 391–399. DOI: 10.1017/S0022112075003448.
    [15] 牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡射流现象的试验研究 [J]. 哈尔滨工程大学学报, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.

    MU J L, ZHU X, HUANG X M, et al. Experimental study of jets formed by bubbles from underwater explosions [J]. Journal of Harbin Engineering University, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.
    [16] 崔杰, 张阿漫, 郭君, 等. 舱段结构在气泡射流作用下的毁伤效果 [J]. 爆炸与冲击, 2012, 32(4): 355–361. DOI: 10.11883/1001-1455(2012)04-0355-07.

    CUI J, ZHANG A M, GUO J, et al. Damage effect of cabin structure subjected to bubble jet [J]. Explosion and Shock Waves, 2012, 32(4): 355–361. DOI: 10.11883/1001-1455(2012)04-0355-07.
    [17] 黄超, 汪斌, 张远平, 等. 柱形装药自由场水中爆炸气泡的射流特性 [J]. 爆炸与冲击, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.

    HUANG C, WANG B, ZHANG Y P, et al. Behaviors of bubble jets induced by underwater explosion of cylindrical charges under free-field conditions [J]. Explosion and Shock Waves, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.
    [18] KOROBKIN A. Global characteristics of jet impact [J]. Journal of Fluid Mechanics, 1996, 307: 63–84. DOI: 10.1017/S0022112096000043.
    [19] KOROBKIN A, KHABAKHPASHEVA T I, WU G X. Coupled hydrodynamic and structural analysis of compressible jet impact onto elastic panels [J]. Journal of Fluids and Structures, 2008, 24(7): 1021–1041. DOI: 10.1016/j.jfluidstructs.2008.03.002.
    [20] HSU C Y, LIANG C C, TENG T L, et al. A numerical study on high-speed water jet impact [J]. Ocean Engineering, 2013, 72: 98–106. DOI: 10.1016/j.oceaneng.2013.06.012.
    [21] 孙士丽, 胡健, 胡竞中. 可压缩性水柱冲击弹性平板的砰击问题研究 [J]. 船舶力学, 2013, 17(9): 1031–1037. DOI: 10.3969/j.issn.1007-7294.2013.09.007.

    SUN S L, HU J, HU J Z. Impact of a compressible water column on an elastic plate [J]. Journal of Ship Mechanics, 2013, 17(9): 1031–1037. DOI: 10.3969/j.issn.1007-7294.2013.09.007.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  2093
  • HTML全文浏览量:  1089
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-09-16
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回