近场水下爆炸气泡与双层破口结构的相互作用

贺铭 张阿漫 刘云龙

贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用[J]. 爆炸与冲击, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110
引用本文: 贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用[J]. 爆炸与冲击, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110
HE Ming, ZHANG Aman, LIU Yunlong. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes[J]. Explosion And Shock Waves, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110
Citation: HE Ming, ZHANG Aman, LIU Yunlong. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes[J]. Explosion And Shock Waves, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110

近场水下爆炸气泡与双层破口结构的相互作用

doi: 10.11883/bzycj-2020-0110
基金项目: 国家自然科学基金(11872158)
详细信息
    作者简介:

    贺 铭(1996- ),男,博士,20140112heming@hrbeu.edu.cn

    通讯作者:

    张阿漫(1981- ),男,博士,教授,博士生导师,zhangaman@hrbeu.edu.cn

  • 中图分类号: O383

Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes

  • 摘要: 针对双层结构在水中受到水下爆炸冲击这一问题,利用欧拉有限元数值模型对近场水下爆炸气泡与双层破口结构的相互作用机理进行了研究,分析了舱室涌流及流场演化等规律。首先,通过放电实验对数值模型进行了验证,结果表明,数值结果和实验结果吻合较好;然后,总结了不同破口尺寸、不同起爆位置和不同壳间水位条件下的耦合作用规律。在内部空气、流体惯性以及破口的联合作用下,气泡演化过程中会出现气泡分割现象。当内层破口尺寸系数小于0.5时,内舱室内会出现二次涌流现象,且涌流形态较细长;炸药起爆位置系数小于0.1时,自由液面处会出现破碎和重闭合现象;壳内水位对舱室涌流量的影响作用较为复杂,当水位满舱时,急速涌流会减少船艇的应急时间。
  • 图  1  近场水下爆炸气泡与双层破口结构相互作用示意图

    Figure  1.  Schematic of interaction between bubble and double breaken structure in near field underwater explosion

    图  2  欧拉有限元方法示意图

    Figure  2.  Schematic of Eulerian finite element method

    图  3  实验装置图

    Figure  3.  Picture of experimental device

    图  4  数值结果和实验结果的对比图

    Figure  4.  The comparison between numerical and experimental results

    图  5  不同时刻气泡的形态和流场压力变化图

    Figure  5.  The bubble shape and flow field pressure change at different moments

    图  6  不同时刻气泡的形态和流场压力变化图

    Figure  6.  The bubble shape and flow field pressure change at different moments

    图  7  不同破口尺寸下舱室涌流量随时间的变化曲线

    Figure  7.  Changes of cabin inrush flow with time under different breach size

    图  8  不同时刻气泡的形态和流场压力变化图

    Figure  8.  The bubble shape and flow field pressure change at different moments

    图  9  不同起爆位置下舱室涌流量随时间的变化曲线

    Figure  9.  Changes of cabin inrush flow with time under different detonation position

    图  10  不同时刻气泡的形态和流场压力变化图

    Figure  10.  The bubble shape and flow field pressure change at different moments

    图  11  不同水位下舱室涌流量随时间的变化曲线

    Figure  11.  Changes of cabin inrush flow with time at different water levels

  • [1] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展 [J]. 中国舰船研究, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.

    ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures [J]. Chinese Journal of Ship Research, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.
    [2] 金键, 朱锡, 侯海量, 等. 水下爆炸载荷下舰船响应与毁伤研究综述 [J]. 水下无人系统学报, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.

    JIN J, ZHU X, HOU H L, et al. Review of dynamic response and damage mechanism of ship structure subjected to underwater explosion load [J]. Journal of Unmanned Undersea Systems, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.
    [3] KLASEBOER E, KHOO B C, HUNG K C. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures, 2005, 21(4): 395–412. DOI: 10.1016/j.jfluidstructs.2005.08.006.
    [4] WANG S P, ZHANG A M, LIU Y L et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–91. DOI: 10.1007/s42241-018-0141-3.
    [5] 张洪, 吴红波, 夏曼曼, 等. 水下爆炸边界效应的研究进展 [J]. 煤矿爆破, 2018(5): 1–5.

    ZHANG H, WU H B, XIA M M, et al. Research progress of the boundary effect on underwater blasting [J]. Coal Mine Blasting, 2018(5): 1–5.
    [6] 张弩, 宗智. 水下爆炸气泡载荷作用下船体梁的动态水弹性响应 [J]. 船舶力学, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013.

    ZHANG N, ZONG Z. Dynamic hydro-elastic response of a ship hull girder subjected to underwater explosion bubbles [J]. Journal of Ship Mechanics, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013.
    [7] GAO J G, CHEN Z H, HUANG Z G et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [8] 张振华, 牟金磊, 陈崧, 等. 大型水面舰艇在重型鱼雷水下近距爆炸作用下的毁伤效应 [J]. 海军工程大学学报, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006.

    ZHANG Z H, MU J L, CHEN S, et al. Anomalous dynamic response of ship beam to near-field underwater explosion of heavy torpedo [J]. Journal of Naval University of Engineering, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006.
    [9] 殷彩玉, 金泽宇, 谌勇, 等. 多孔覆盖层水下爆炸流固耦合分析 [J]. 振动与冲击, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002.

    YIN C Y, JIN Z Y, CHEN Y, et al. Fluid-structure interaction effects of cellular claddings to underwater explosion [J]. Journal of Vibration and Shock, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002.
    [10] 张伦平, 潘建强, 刘建湖, 等. 多层结构水下爆炸破坏效应研究 [C] // 第十届全国冲击动力学讨论会论文集. 太原: 中国力学学会, 2011: 1−13.
    [11] ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–60. DOI: 10.1017/jfm.2015.323.
    [12] LIU Y L, WANG S P, ZHANG A M. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28(6): 062105. DOI: 10.1063/1.4953010.
    [13] LIU N N, WU W B, ZhANG A M et al. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate [J]. Physics of Fluids, 2017, 29(10): 107102. DOI: 10.1063/1.4999406.
    [14] 刘润泉, 白雪飞, 朱锡. 舰船单元结构模型水下接触爆炸破口试验研究 [J]. 海军工程大学学报, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.

    LIU R Q, BAI X F, ZHU X, et al. Breach experiment research of vessel element structure models subjected to underwater contact explosion [J]. Journal of Naval University of Engineering, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.
    [15] 李金河, 汪斌, 王彦平, 等. 不同装药形状TNT水中爆炸近场冲击波传播的实验研究 [J]. 火炸药学报, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007.

    LI J H, WANG B, WANG Y P, et al. Experimental study on near-field shock wave propagation of underwater explosion of TNT with different charge shapes [J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007.
    [16] 杨棣, 姚熊亮, 王军, 等. 接触爆炸载荷作用下船体板架破口大小的预测 [J]. 中国造船, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009.

    YANG D, YAO X L, WANG J, et al. Forecast of crevasse size of hull grillage in contact explosion [J]. Shipbuilding of China, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009.
    [17] LI S, Li Y B, ZHANG A M. Numerical analysis of the bubble jet impact on a rigid wall [J]. Applied Ocean Research, 2015, 50: 227–236. DOI: 10.1016/j.apor.2015.02.003.
    [18] 汪浩, 程远胜, 刘均, 等. 新型矩形蜂窝夹芯夹层加筋圆柱壳抗水下爆炸冲击载荷分析 [J]. 振动与冲击, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036.

    WANG H, CHENG Y S, LIU J, et al. Anti-shock analysis for new type rectangular honeycomb sandwich stiffened cylindrical shells subjected to underwater explosion shock load [J]. Journal of Vibration and Shock, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036.
    [19] ZHANG A M, LIU Y L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223. DOI: 10.1016/j.jcp.2015.03.049.
    [20] LI T, WANG S P, LI S, et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58. DOI: 10.1016/j.apor.2018.02.024.
    [21] 王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.

    WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
    [22] BENSON D J. Computational methods in lagrangian and eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2−3): 235–394. DOI: 10.1016/0045-7825(92)90042-I.
    [23] LIU Y L, ZHANG A M, TIAN Z L, et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190. DOI: 10.1016/j.oceaneng.2018.08.001.
    [24] HE M, ZHANG A M, LIU Y L. Prolonged simulation of near-free surface underwater explosion based on Eulerian finite element method [J]. Theoretical and Applied Mechanics Letters, 2020, 10(1): 16–22. DOI: 10.1016/j.taml.2020.01.003.
    [25] TIAN Z L, LIU Y L, ZHANG A M, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method [J]. Ocean Engineering, 2020, 196: 106714. DOI: 10.1016/j.oceaneng.2019.106714.
    [26] QIU J X, LIU T G, KHOO B C. Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with ghost fluid method [J]. Communications in Computational Physics, 2008, 3(2): 479–504.
    [27] FELIPPA C A. A family of early-time approximations for fluid-structure interaction [J]. Journal of Applied Mechanics, 1980, 47(4): 703–708. DOI: 10.1115/1.3153777.
  • 加载中
图(11)
计量
  • 文章访问数:  3513
  • HTML全文浏览量:  1233
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-05-22
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回