高速列车用6008铝合金动态变形本构与损伤模型参数研究

高玉龙 孙晓红

高玉龙, 孙晓红. 高速列车用6008铝合金动态变形本构与损伤模型参数研究[J]. 爆炸与冲击, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119
引用本文: 高玉龙, 孙晓红. 高速列车用6008铝合金动态变形本构与损伤模型参数研究[J]. 爆炸与冲击, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119
GAO Yulong, SUN Xiaohong. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles[J]. Explosion And Shock Waves, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119
Citation: GAO Yulong, SUN Xiaohong. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles[J]. Explosion And Shock Waves, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119

高速列车用6008铝合金动态变形本构与损伤模型参数研究

doi: 10.11883/bzycj-2020-0119
详细信息
    作者简介:

    高玉龙(1983- ),男,硕士,高级工程师,gaoyulong.sf@crrcgc.cc

    通讯作者:

    孙晓红(1988- ),男,硕士,工程师,sunxiaohong.sf@crrcgc.cc

  • 中图分类号: O341

On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles

  • 摘要: 高速列车在实际服役过程中会经受复杂的应力状态和环境条件,铝合金型材以其优良的力学和加工性能被广泛应用于新型高速列车的吸能结构,其防撞性能对高速列车的安全运行至关重要。本文针对一种新型轨道车辆用材料6008-T4铝合金型材进行了多种力学性能测试,包括动静态拉压实验、准静态高低温实验、不同应力路径的断裂实验等,提出了一种计算局部断裂应变的新方法,进而标定和获取了Johnson-Cook本构和损伤模型参数。最后利用平板侵彻实验来对所获取的参数进行检验,发现模拟和实验结果吻合良好,说明本文所获取的参数和参数标定方法都是有效的。
  • 图  1  初始材料的EBSD取向成像图

    Figure  1.  EBSD inverse pole figure maps of initial materials

    图  2  试样形貌和尺寸(单位:mm)

    Figure  2.  Configurations and sizes of the samples (unit: mm)

    图  3  铝合金单轴拉伸和压缩真实应力应变曲线

    Figure  3.  True stress-strain curves of the aluminum alloys under uniaxial tension and compression

    图  4  J-C模型拟合曲线

    Figure  4.  J-C fitting to experimental curves

    图  5  模拟塑性变形场演化过程

    Figure  5.  Evolution of simulated plastic strain fields in the samples

    图  6  模拟与实验获得的力-位移曲线

    Figure  6.  Force-displacement curves according to experiment and simulation

    图  7  变形区局部应变和应力三轴度曲线

    Figure  7.  Evolution of the local strain and stress triaxiality in deformation areas

    图  8  双缺口试样局部断裂应变

    Figure  8.  Local fracture strain of the double notch specimen

    图  9  归一化断裂应变随应力三轴度的变化

    Figure  9.  Variation of local fracture strain with stress triaxiality

    图  10  不同应变率下室温铝合金单轴拉伸/压缩的真实应力应变曲线

    Figure  10.  True stress-strain curves of aluminum alloys due to uniaxial tension/compression at different strain rates and room temperature

    图  11  应变为5%处的归一化流动应力

    Figure  11.  Normalized flow stress at the strain of 5%

    图  12  归一化断裂应变随应变率对数的变化关系

    Figure  12.  Normalized fracture strain varying with the logarithmic normalized strain rates

    图  13  不同环境温度下6008-T4铝合金准静态单轴拉伸真实应力应变曲线

    Figure  13.  Quasi-static true stress-strain curves of 6008-T4 aluminum alloys by uniaxial tension at different temperatures

    图  14  归一化屈服应力随归一化温度的变化关系

    Figure  14.  Normalized fracture strain varying with the normalized temperature

    图  15  归一化断裂应变随归一化温度的变化关系

    Figure  15.  Normalized yield stress varies with the normalized temperature

    图  16  实验与J-C模型结果对比

    Figure  16.  Comparison between experimental results and J-C model predictions

    图  17  侵彻实验子弹的形状和尺寸(单位:mm)

    Figure  17.  Shape and size of the bullets (Unit: mm)

    图  18  靶板受侵彻破坏过程的实验与模拟形态

    Figure  18.  Fracture morphologies of the target after penetration: comparison between the experiments and modeling

    图  19  侵彻加载下靶板破坏形貌的实验和模拟结果

    Figure  19.  Fracture morphologies of the target after penetration by experiments and simulation

    表  1  6008-T4铝合金J-C本构和损伤断裂参数

    Table  1.   J-C constitutive and damage parameters of the 6008-T4 aluminum alloy

    A/MPaB/MPanCmD1D2D3D4D5
    1501010.190.00791.0600.2840.677−2.4610.0131.60
    下载: 导出CSV
  • [1] 田红旗. 中国列车空气动力学研究进展 [J]. 交通运输工程学报, 2006, 6(1): 1–9. DOI: 10.3321/j.issn:1671-1637.2006.01.001.

    TIAN H Q. Study evolvement of train aerodynamics in China [J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1–9. DOI: 10.3321/j.issn:1671-1637.2006.01.001.
    [2] 关庆华. 列车脱轨机理及运行安全性研究 [D]. 成都: 西南交通大学, 2010. DOI: 10.7666/d.y1957673.

    GUAN Q H. Study on the derailment mechanism and running safety of trains [D]. Chengdu: Southwest Jiaotong University, 2010. DOI: 10.7666/d.y1957673.
    [3] LIAO X T, LI Q, YANG X J, et al. A two-stage multi-objective optimisation of vehicle crashworthiness under frontal impact [J]. International Journal of Crashworthiness, 2008, 13(3): 279–288. DOI: 10.1080/13588260801933659.
    [4] 单其雨. 高速列车车体耐碰撞结构研究 [D]. 成都: 西南交通大学, 2010. DOI: 10.7666/d.y1687195.

    SHAN Q Y. The study of crash-resistant structure for high-speed trains [D]. Chengdu: Southwest Jiaotong University, 2010. DOI: 10.7666/d.y1687195.
    [5] 王文斌, 康康, 赵洪伦. 列车耐碰撞系统有限元和多体动力学联合仿真 [J]. 同济大学学报(自然科学版), 2011, 39(10): 1552–1556. DOI: 10.3969/j.issn.0253-374x.2011.10.026.

    WANG W B, KANG K, ZHAO H L. Joint simulation of crashworthy train set based on finite element and multibody dynamic [J]. Journal of Tongji University (Natural Science), 2011, 39(10): 1552–1556. DOI: 10.3969/j.issn.0253-374x.2011.10.026.
    [6] 刘金朝, 房加志, 王成国, 等. 铁道客车大变形碰撞仿真研究 [J]. 中国铁道科学, 2004, 25(6): 1–8. DOI: 10.3321/j.issn:1001-4632.2004.06.001.

    LIU J Z, FANG J Z, WANG C G, et al. Simulation research on finite deformation crashworthiness of railway passenger car [J]. China Railway Science, 2004, 25(6): 1–8. DOI: 10.3321/j.issn:1001-4632.2004.06.001.
    [7] 杜志岐, 邵朋礼. 铝合金车体抗冲击能力的动态有限元仿真 [J]. 兵工学报, 2009, 30(1): 1–4. DOI: 10.3321/j.issn:1000-1093.2009.01.001.

    DU Z Q, SHAO P L. Dynamic finite element simulation of the aluminum alloy hull at landing [J]. Acta Armamentarii, 2009, 30(1): 1–4. DOI: 10.3321/j.issn:1000-1093.2009.01.001.
    [8] ESKANDARIAN A, MARZOUGUI D, BEDEWI N E. Finite element model and validation of a surrogate crash test vehicle for impacts with roadside objects [J]. International Journal of Crashworthiness, 1997, 2(3): 239–258. DOI: 10.1533/cras.1997.0048.
    [9] MIZUNO K, KAJZER J. Head injuries in vehicle-pedestrian impact: 2000-01-0157 [R]. Warrendale, PA: Society for Automotive Engineers, 2000. DOI: 10.4271/2000-01-0157.
    [10] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C] // Proceedings of the 7th International Symposium on Ballistics. Hague: International Ballistics Committee, 1983: 541−547.
    [11] UMBRELLO D, M’SAOUBI R, OUTEIRO J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel [J]. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 462–470. DOI: 10.1016/j.ijmachtools.2006.06.006.
    [12] WANG X Y, HUANG C Z, ZOU B, et al. Dynamic behavior and a modified Johnson-Cook constitutive model of Inconel 718 at high strain rate and elevated temperature [J]. Materials Science and Engineering: A, 2013, 580: 385–390. DOI: 10.1016/j.msea.2013.05.062.
    [13] 刘再德, 王冠, 冯银成, 等. 6061铝合金高应变速率本构参数研究 [J]. 矿冶工程, 2011, 31(6): 120–123. DOI: 10.3969/j.issn.0253-6099.2011.06.032.

    LIU Z D, WANG G, FENG Y C, et al. High-strain-rate constitutive parameters of 6061 aluminum alloys [J]. Mining and Metallurgical Engineering, 2011, 31(6): 120–123. DOI: 10.3969/j.issn.0253-6099.2011.06.032.
    [14] 胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192.

    HU C M, HE H L, HU S S. A study on dynamic mechanical behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192.
    [15] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158, 172. DOI: 10.13465/j.cnki.jvs.2014.09.028.

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158, 172. DOI: 10.13465/j.cnki.jvs.2014.09.028.
    [16] 吴璐, 刘廷玉, 董万鹏, 等. 6008铝合金在不同挤压方向上的力学性能和断裂行为的研究 [J]. 热加工工艺, 2016, 45(2): 53–55, 59. DOI: 10.14158/j.cnki.1001-3814.2016.02.014.

    WU L, LIU T Y, DONG W P, et al. Study on tensile behavior and fractography of 6008 Al alloy at different extruded direction [J]. Hot Working Technology, 2016, 45(2): 53–55, 59. DOI: 10.14158/j.cnki.1001-3814.2016.02.014.
    [17] HӦRLING D. Parameter identification of GISSMO damage model for DOCOL 1200M: a study on crash simulation for high strength steel sheet components [D]. Karlstad: Karlstad University, 2015.
    [18] 姚宗勇, 刘庆, GODFREY A, 等. 大应变量冷轧AA1050铝合金微观组织与织构的演变 [J]. 金属学报, 2009, 45(6): 647–651. DOI: 10.3321/j.issn:0412-1961.2009.06.002.

    YAO Z Y, LIU Q, GODFREY A, et al. Micro structure and texture evolutions of AA1050 aluminum alloy cold rolled to high strains [J]. Acta Metallurgica Sinica, 2009, 45(6): 647–651. DOI: 10.3321/j.issn:0412-1961.2009.06.002.
    [19] 赵磊, 李玉龙, 陈煊. 一种绸布的冲击拉伸性能实验 [J]. 爆炸与冲击, 2014, 34(4): 476–482. DOI: 10.11883/1001-1455(2014)04-0476-07.

    ZHAO L, LI Y L, CHEN X. Experimental study on dynamic tensile behaviour of a kind of fiber silk [J]. Explosion and Shock Waves, 2014, 34(4): 476–482. DOI: 10.11883/1001-1455(2014)04-0476-07.
    [20] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [21] GAMBIRASIO L, RIZZI E. On the calibration strategies of the Johnson-Cook strength model: discussion and applications to experimental data [J]. Materials Science and Engineering: A, 2014, 610: 370–413. DOI: 10.1016/j.msea.2014.05.006.
    [22] 李言荣, 恽正中. 材料物理学概论[M]. 北京: 清华大学出版社, 2001.
    [23] ZHANG W H, SUN D Q, HAN L J, et al. Characterization of intermetallic compounds in dissimilar material resistance spot welded joint of high strength steel and aluminum alloy [J]. ISIJ International, 2011, 51(11): 1870–1877. DOI: 10.2355/isijinternational.51.1870.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  892
  • HTML全文浏览量:  408
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 修回日期:  2020-10-07
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回