柔性障碍物对甲烷空气爆炸波激励作用的实验研究

张延炜 徐景德 胡洋 田思雨 冯若尘 秦汉圣

张延炜, 徐景德, 胡洋, 田思雨, 冯若尘, 秦汉圣. 柔性障碍物对甲烷空气爆炸波激励作用的实验研究[J]. 爆炸与冲击, 2021, 41(5): 055402. doi: 10.11883/bzycj-2020-0144
引用本文: 张延炜, 徐景德, 胡洋, 田思雨, 冯若尘, 秦汉圣. 柔性障碍物对甲烷空气爆炸波激励作用的实验研究[J]. 爆炸与冲击, 2021, 41(5): 055402. doi: 10.11883/bzycj-2020-0144
ZHANG Yanwei, XU Jingde, HU Yang, TIAN Siyu, FENG Ruochen, QIN Hansheng. Experimental study on incentive effect of flexible obstacle on methane-air explosion wave[J]. Explosion And Shock Waves, 2021, 41(5): 055402. doi: 10.11883/bzycj-2020-0144
Citation: ZHANG Yanwei, XU Jingde, HU Yang, TIAN Siyu, FENG Ruochen, QIN Hansheng. Experimental study on incentive effect of flexible obstacle on methane-air explosion wave[J]. Explosion And Shock Waves, 2021, 41(5): 055402. doi: 10.11883/bzycj-2020-0144

柔性障碍物对甲烷空气爆炸波激励作用的实验研究

doi: 10.11883/bzycj-2020-0144
基金项目: 国家自然科学基金(51874134,51374108);“十三五”国家重点研发计划(2016YFC0801502);华北科技学院中央高校基本科研业务费项目(3142018017)
详细信息
    作者简介:

    张延炜(1996- ),男,硕士研究生,zywtime@163.com

    通讯作者:

    徐景德(1965- ),男,博士,教授,xujd1430@126.com

  • 中图分类号: O381

Experimental study on incentive effect of flexible obstacle on methane-air explosion wave

  • 摘要: 为研究柔性障碍物对甲烷空气爆炸波的激励效应,采用双向拉伸聚丙烯(biaxially oriented polypropylene, BOPP)薄膜作为柔性障碍物将管道内甲烷空气预混气体与空气隔开,对比障碍物前后火焰、激波变化,分析膜状柔性障碍物激励效应的机理。实验结果表明:这种具有一定承压能力的柔性障碍物对甲烷爆炸波产生的激励效应不可忽视,在膜片破裂前产生多次激波反射过程,可诱导湍流火焰形成,促使膜前爆炸压力提高,膜片破裂后,火焰在伴流作用下传播速度突增,并加速逐渐逼近前驱冲击波,致使膜后爆炸压力大幅提高;激励效应可使膜片前后最大爆炸压力相差5倍,火焰速度相差7倍;另外在膜片位置2.5 m后增设一道膜片,可增强这种激励效应,而增加膜片的实质是使激波火焰相互作用的次数增加。
  • 图  1  实验管道

    Figure  1.  Experimental pipeline

    图  2  实验工况

    Figure  2.  Experimental conditions

    图  3  运动轨迹示意图

    Figure  3.  Schematics of shock wave and flame front propagation

    图  4  传感器P1测得的压力变化

    Figure  4.  Pressure-time history measured by pressure sensor P1

    图  5  传感器P2测得的压力变化

    Figure  5.  Pressure-time history measured by pressure sensor P2

    图  6  实验工况Ⅰ下障碍物后压力传感器测得的压力变化曲线

    Figure  6.  Pressure-time histories measured by different pressure sensors behind obstacle under experimental condition Ⅰ

    图  7  实验工况Ⅱ下压力传感器测得的压力变化曲线

    Figure  7.  Pressure-time histories measured by different pressure sensors under experimental condition Ⅱ

    表  1  工况Ⅰ下激波特征参数

    Table  1.   Characteristic parameters for shock wave under experimental condition Ⅰ

    压力传感器激波到达时刻/ms波阵面位置/m超压/kPa激波传播速度/(m·s−1马赫数
    P1 66.37 4.5042.70396.671.12
    P2 74.79 7.8443.25
    P3197.21 8.9574.43424.94
    414.59
    406.86
    1.23
    1.23
    1.18
    P4205.0712.2970.59
    P5211.1014.7953.07
    P6215.1816.4549.32
    下载: 导出CSV

    表  2  工况Ⅰ下的火焰特征参数

    Table  2.   Characteristic parameters for flame under experimental condition Ⅰ

    火焰传感器火焰到达时刻/ms火焰锋面位置/m火焰传播速度/(m·s−1
    F1165.114.50 64.30
    211.03
    231.62
    358.68
    538.96
    F2217.057.84
    F3222.318.95
    F4236.7312.29
    F5243.7014.79
    F6246.7816.45
    F7未出现火焰
    下载: 导出CSV

    表  3  实验工况Ⅰ下激波振荡部分特征参数

    Table  3.   Characteristic parameters of shock wave oscillation under experimental condition Ⅰ

    激波到达传感器P1方向激波到达传感器P2激波传播速度/
    (m·s−1
    时刻/ms超压/kPa时刻/ms超压/kPa
    66.37 (a)41.055 74.79 (a′)42.151396.67
    87.97 (b)31.252 78.84 (b′)32.897365.83
    105.39 (c)41.538114.27 (c′)39.477376.13
    128.00 (d)29.059118.63 (d′)33.993356.46
    142.96 (e)50.991151.59 (e′)51.539387.02
    165.20 (f)38.823155.77 (f′)41.990354.19
    175.91 (g)25.231184.69 (g′)37.462380.41
    下载: 导出CSV

    表  4  实验工况Ⅱ下的激波特征参数

    Table  4.   Shock wave characteristic parameters under experimental condition Ⅱ

    压力传感器激波到达时刻/ms波阵面位置/m超压/kPa激波传播速度/(m·s−1马赫数
    P1203.01 8.9578.34444.441.28
    P2204.90 9.7971.78
    P3230.2612.2991.41448.83
    439.15
    447.60
    1.30
    1.27
    1.29
    P4235.8314.7978.28
    P5239.6116.4566.30
    P6247.7220.0892.12
    下载: 导出CSV

    表  5  实验工况Ⅱ下的火焰特征参数

    Table  5.   Flame characteristic parameters under experimental condition Ⅱ

    火焰传感器火焰到达时刻/ms火焰锋面位置/m火焰传播速度/(m·s−1
    F1247.39 8.95223.98
    301.20
    436.30
    568.49
    F2250.98 9.79
    F3259.2812.29
    F4265.0114.79
    F5267.9316.45
    F6未出现火焰
    下载: 导出CSV
  • [1] 林柏泉, 周世宁, 张仁贵. 障碍物对瓦斯爆炸过程中火焰和爆炸波的影响 [J]. 中国矿业大学学报, 1999, 28(2): 104–107. DOI: 10.3321/j.issn: 1000-1964.1999.02.002.

    LIN B Q, ZHOU S N, ZHANG R G. Influence of barriers on flame transmission and explosion wave in gas explosion [J]. Journal of China University of Mining & Technology, 1999, 28(2): 104–107. DOI: 10.3321/j.issn: 1000-1964.1999.02.002.
    [2] 何学秋, 杨艺, 王恩元, 等. 障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究 [J]. 煤炭学报, 2004, 29(2): 186–189. DOI: 10.3321/j.issn: 0253-9993.2004.02.014.

    HE X Q, YANG Y, WANG E Y, et al. Effects of obstacle on premixed flame microstructure and flame propagation in methane/air explosion [J]. Journal of China Coal Society, 2004, 29(2): 186–189. DOI: 10.3321/j.issn: 0253-9993.2004.02.014.
    [3] 徐景德, 张莉聪, 黎体发, 等. 煤矿瓦斯爆炸事故中矿车激励效应的数值模拟 [J]. 爆炸与冲击, 2012, 32(1): 47–50. DOI: 10.11883/1001-1455(2012)01-0047-04.

    XU J D, ZHANG L C, LI T F, et al. A numerical simulation of stimulating effect of tramcars during the methane explosion propagation [J]. Explosion and Shock Waves, 2012, 32(1): 47–50. DOI: 10.11883/1001-1455(2012)01-0047-04.
    [4] 徐景德, 黎体发, 张莉聪, 等. 瓦斯爆炸传播过程中矿车激励效应的实验研究 [J]. 中国安全生产科学技术, 2011, 7(2): 5–8. DOI: 10.3969/j.issn.1673-193X.2011.02.001.

    XU J D, LI T F, ZHANG L C, et al. Experiment study of inspirit affection by the tramcar during the methane explosion propagation [J]. Journal of Safety Science and Technology, 2011, 7(2): 5–8. DOI: 10.3969/j.issn.1673-193X.2011.02.001.
    [5] 徐景德. 矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D]. 北京: 中国矿业大学(北京), 2003: 14−19.
    [6] 景国勋, 吴昱楼, 郭绍帅, 等. 障碍物对瓦斯煤尘爆炸火焰传播规律的影响 [J]. 中国安全生产科学技术, 2019, 15(9): 99–104. DOI: 10.11731/j.issn.1673-193x.2019.09.016.

    JING G X, WU Y L, GUO S S, et al. Influence of obstacle on flame propagation laws of gas and coal dust explosion [J]. Journal of Safety Science and Technology, 2019, 15(9): 99–104. DOI: 10.11731/j.issn.1673-193x.2019.09.016.
    [7] 余明高, 纪文涛, 温小萍, 等. 交错障碍物对瓦斯爆炸影响的实验研究 [J]. 中国矿业大学学报, 2013, 42(3): 349–354. DOI: 10.13247/j.cnki.jcumt.2013.03.004.

    YU M G, JI W T, WEN X P, et al. Experimental study of the influence of staggered obstacles on gas explosion [J]. Journal of China University of Mining and Technology, 2013, 42(3): 349–354. DOI: 10.13247/j.cnki.jcumt.2013.03.004.
    [8] WANG C, CUI Y Y, MEBARKI A, et al. Effect of a tilted obstacle on the flame propagation of gas explosion in case of low initial pressure [J]. Combustion Science and Technology, 2020. DOI: 10.1080/00102202.2020.1740689.
    [9] WANG C, MA T B, LU J. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 269–278. DOI: 10.1007/s11433-009-0270-3.
    [10] MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000, 21(1−3): 109–116. DOI: 10.1016/S0894-1777(99)00060-6.
    [11] TEODORCZYK A. Scale effects on hydrogen-air fast deflagrations and detonations in small obstructed channels [J]. Journal of Loss Prevention in the Process Industries, 2007, 21(2): 147–153. DOI: 10.1016/j.jlp.2007.06.017.
    [12] BAKKE J R, VAN WINGERDEN K, HOORELBEKE P, et al. A study on the effect of trees on gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 878–884. DOI: 10.1016/j.jlp.2010.08.007.
    [13] 赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996: 13−14.
    [14] 归明月, 范宝春, 于陆军, 等. 入射和反射激波与火焰相互作用的实验和数值显示 [J]. 自然科学进展, 2007, 17(6): 831–836. DOI: 10.3321/j.issn: 1002-008X.2007.06.019.
    [15] 范宝春, 冮强, 董刚, 等. 激波与火焰的相互作用过程 [J]. 爆炸与冲击, 2003, 23(6): 488–492.

    FAN B C, JIANG Q, DONG G, et al. The time evolution of shock-flame interaction [J]. Explosion and Shock Waves, 2003, 23(6): 488–492.
    [16] 蒋华. 激波诱导预混火焰界面RM不稳定性的数值研究[D]. 南京: 南京理工大学, 2017: 21−22.

    JIANG H. Numerical study of RM instability on a perturbed interface of premixed flame induced by shock waves[D]. Nanjing: Nanjing University of Science Technology, 2017: 21−22.
    [17] CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003.
    [18] GAMEZO V N, OGAWA T, ORAN E S. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2463–2471. DOI: 10.1016/j.proci.2006.07.220.
    [19] 史晓亮. 中尺度瓦斯爆炸试验管道测试系统调试与分析[D]. 廊坊: 华北科技学院, 2016: 24−26.

    SHI X L. Commissioning and analysis of the test system for the gas explosion shock tube[D]. Langfang: North China Institute of Science and Technology, 2016: 24−26.
    [20] 赖芳芳. 电火源引爆瓦斯的规律和特征研究[D]. 廊坊: 华北科技学院, 2015: 31−33.

    LAI F F. Study on the law and characteristics of gas explosion ignited by electric fire source[D]. Langfang: North China Institute of Science and Technology, 2015: 31−33.
    [21] 陈强. 激波管流动的理论和实验技术[M]. 合肥: 中国科技大学五系, 1979: 59−61.
    [22] 林柏泉. 煤矿瓦斯爆炸机理及防治技术[M]. 徐州: 中国矿业大学出版社, 2012: 124−126.
    [23] 何惠琴. 反射激波作用下的Richtmyer-Meshkov不稳定性的相关研究[D]. 合肥: 中国科学技术大学, 2015: 3.

    HE H Q. Research on the Richtmyer-Meshkov instability under reshock[D]. Hefei: University of Science and Technology of China, 2015: 3.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  284
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-06-22
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-05-05

目录

    /

    返回文章
    返回