Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于离散单元法的发射装药挤压破碎模拟实验

张瑞华 芮筱亭 赵宏立 王琼林 靳建伟

吴松林, 杜扬, 欧益宏, 张培理, 梁建军. 油气在持续热壁下热着火发生的数值模拟[J]. 爆炸与冲击, 2018, 38(3): 541-548. doi: 10.11883/bzycj-2016-0262
引用本文: 张瑞华, 芮筱亭, 赵宏立, 王琼林, 靳建伟. 基于离散单元法的发射装药挤压破碎模拟实验[J]. 爆炸与冲击, 2021, 41(6): 062301. doi: 10.11883/bzycj-2020-0157
WU Songlin, DU Yang, OU Yihong, ZHANG Peili, LIANG Jianjun. Numerical simulation of gasoline-air thermal ignition induced by continuous hot wall[J]. Explosion And Shock Waves, 2018, 38(3): 541-548. doi: 10.11883/bzycj-2016-0262
Citation: ZHANG Ruihua, RUI Xiaoting, ZHAO Hongli, WANG Qionglin, JIN Jianwei. Simulational experiment on compression and fracture of propellant charge based on the discrete element method[J]. Explosion And Shock Waves, 2021, 41(6): 062301. doi: 10.11883/bzycj-2020-0157

基于离散单元法的发射装药挤压破碎模拟实验

doi: 10.11883/bzycj-2020-0157
详细信息
    作者简介:

    张瑞华(1991- ),女,博士,助理研究员,zhang_njust@163.com

    通讯作者:

    赵宏立(1972- ),男,研究员,webzhl@126.com

  • 中图分类号: O383

Simulational experiment on compression and fracture of propellant charge based on the discrete element method

  • 摘要: 为了揭示发射装药破碎引起的膛炸现象,急需进行相应装药结构下发射装药挤压破碎数值模拟研究。以硝胺花边十九孔发射药为研究对象,基于离散单元法建立了发射装药挤压破碎模拟系统,同时进行了发射装药动态挤压破碎实验,通过数值模拟与实验获得了不同冲击载荷下的破碎发射装药和挤压应力;分别对获得的破碎发射装药进行了密闭爆发器数值模拟和实验。结果表明:模拟与实验获得的发射装药挤压应力时间历程、密闭爆发器压力时间曲线和起始动态活度比的一致性较好,实验验证了发射装药挤压破碎模拟系统的有效性及合理性。该模拟系统具有重大工程应用价值,为高能发射装药冲击破碎过程和发射装药发射安全性研究奠定了基础。
  • 可燃气体着火过程的影响因素、燃烧特性、传播特性等一直是安全领域的研究热点,已取得了许多成果。其中对单质可燃气体的研究成果较多,对混合可燃气体的研究较少,如油气。油气是一种主要由轻质烷烃组成的混合物。混合物的研究较困难,如对汽油燃烧特性的研究,往往采用其替代物进行研究[1-3]。Du等[4]已通过实验研究了油气着火的影响因素,欧益宏等[5]、杜扬等[6]、Ou等[7]已通过实验研究了受限空间爆炸的传播特性。但受实验条件限制,某些研究还有待深入,如温度、压力、火焰速度、湍流变化速度、组分变化速度等参数的演变特征。数值模拟是研究可燃气体着火、爆炸过程的一种有效方法,如Bi等[8]、Wang等[9]、Skjold等[10]研究了具有某种特殊几何结构的封闭管道内的气体爆炸过程,Sarli等[11]研究了有障碍物直管道内的气体爆炸过程。通过数值模拟能获得采用实验方法不能测试和观察到的一些信息,而且还具有安全、经济的特点。但是数值模拟的关键是建立恰当的模型、反应机理和初始条件。吴松林等[12]对油气的化学反应机理进行了简化,为油气着火、爆炸的数值模拟奠定了基础。本文中,基于油气简化机理[12]和实验结果[13],将油气化学动力学、辐射模型和传质相互耦合,通过建立统一控制方程组模型,选择适当的数值解法和初始条件,对持续热壁条件下油气热着火的发生进行数值模拟,以期获得的相关数值结果可作为实验结果的有益补充和启发进一步探讨。

    基于实验背景,对受限空间中油气热着火的发生作如下假设:(1)混合气体处于绝热环境中,受限空间与外界的热量传递可忽略;(2)混合气体处于可压缩、低马赫数的二维流动状态;(3)黏性耗散、压缩功的影响可忽略。

    油气着火过程是流动过程和组分化学反应过程的耦合。在受限空间持续热壁加热情况下,还要同时考虑热壁与气体之间的对流换热、气体间能量的辐射。因此,对油气热着火需要同时建立化学反应模型、对流换热模型、辐射模型以及综合上述模型的流场控制方程组模型。对化学反应采用吴松林等[12]提出的47个组分、100个基元反应的油气简化机理;对辐射模型采用P-1模型;对加热热壁与可燃气体的对流采用牛顿冷却公式;其他的控制方程有连续方程、动量方程、能量方程、组分方程、k方程、ε方程。化学反应和流场方程通过组分和能量关系直接耦合,辐射模型、对流换热方程与能量方程直接耦合。

    统一模型中基本方程组可表示为瞬态项、对流项、扩散项和源项组成通用输运方程:

    t(ρφ)+div(ρuφ)=div(Γφx)+S

    式中:φ代表温度、质量分数、单位体积的能量和单位体积的动量等控制变量,Γ为对应的交换系数,S为对应的源项,u为气体的速度。

    由于这类方程相互耦合,有强烈的非线性,特别是源项, 因此,采用迭代法进行数值求解,即将方程表示为节点的迭代关系,把连续的基本方程离散化,获得迭代方程。在计算方法上采用有限体积法,在体积域采用混合格式,时间域上采用向后差分格式对控制方程进行离散。控制方程的分离式解法如图 1所示。

    图  1  方程组的分离式解法示意图
    Figure  1.  Schematic diagram for segregated solving equations

    数值模拟区域采用和实验[13]一致的1 700 mm×400 mm绝热受限空间,如图 2所示。模拟区域共分1 400个单元、2 910个内部面、1 511个点。初始压强为一个标准大气压,环境温度为300 K,热壁温度为2 000 K。初始组分如表 1所示。以下通过油气热着火发生过程的流场特征和某些点参数的变化曲线来分析着火特征,选取的7个点位置见图 2图 3中给出了通过数值模拟获得的热壁表面3个点的温度变化曲线。当热爆炸发生时,热壁表面的临界温度为880 K,这与实验结果877 K[13]基本一致。

    表  1  初始组分
    Table  1.  Initial components
    初始组分质量分数摩尔分数摩尔浓度/(mol·cm-3)
    CH40.010.018 27.45×10-7
    C2H60.010.009 73.98×10-7
    C3H80.010.006 62.71×10-7
    C4H100.010.005 02.05×10-7
    n-C7H160.010.002 91.19×10-7
    i-C8H180.010.002 61.04×10-7
    O20.210.192 17.85×10-6
    N20.730.763 03.12×10-5
    下载: 导出CSV 
    | 显示表格
    图  2  实验台架内选点的位置
    Figure  2.  Selected positions in experimental bench
    图  3  热着火发生时热壁表面的临界温度
    Figure  3.  Critical temperature of the hot wall surface when thermal ignition occurs
    3.1.1   温度场变化过程

    选取有代表性的6个时间点来刻画温度场和参数的变化过程,如表 2所示,表中t为时间,n为计算步数,Tmax为最高温度,pmax为最高压力,vx, max为最高横向速度,vy, max为最高纵向速度, I为最大扰动强度,其温度场模拟结果如图 4所示。

    表  2  热着火过程的6个时间点的基本参数
    Table  2.  Basic parameters of the thermal ignition process at 6 time points
    时间点t/msnTmax/Kpmax/Pavx, max/(m·s-1)vy, max/(m·s-1)I/%
    No.1100.0910 000452.1210 484.34.934.76280.551
    No.2413.0663 000581.7892 218.866.8952.592 435.931
    No.3413.5364 800844.91127 912.0109.5155.402 812.672
    No.4413.5380 000872.86144 851.9100.2042.662 266.638
    No.5413.53100 000914.99179 834.699.0140.382 195.186
    No.6414.06587 2001271.99381 857.6306.55142.4414 418.030
    下载: 导出CSV 
    | 显示表格
    图  4  油气热着火温度场模拟图
    Figure  4.  Simulated temperature-field diagrams of gasoline-air thermal ignition

    图 4(a)显示热对流换热和热辐射后,加热壁上空温度场呈笔尖状,气体流动和升温同时发生;图 4(b)温度场显然受到了流动的影响,其形状有所变化,向一侧倾斜,这同实验的可视化结果[13]完全一致;图 4(c)~(e)显示的现象几乎是瞬间完成的,热着火已经发生,形成燃烧核,同时显示了温度场变化过程也是化学反应和流动的耦合过程,使得燃烧向上和向两侧扩张;图 4(f)显示已经形成了次级燃烧火焰,向两侧扩张,弱冲击波也已经形成。

    3.1.2   不同位置的温度突变

    图 5为7个测试点的温度变化曲线。从图 5可知:

    图  5  7个空间点的温度变化曲线
    Figure  5.  Temperature curves of 7 spatial points

    (1) 温度存在突变现象,整个热着火发生过程可分成两段,分别为温度受加热壁和缓慢氧化放热影响的温度缓慢上升过程,以及热着火发生后温度跃升过程;

    (2) 在温度缓慢上升过程阶段,7个空间点的温度基本呈现与空间相关上升,空间对称两侧的温度并不一定对称;

    (3) 在温度缓慢上升过程阶段,受流场的影响,7个点的温度稳定上升;

    (4) 从图 5(b)可以发现,尽管起燃时间很短,但还存在2个小的温度突变阶段,说明起燃中存在非线性特性,其原因需要深入研究;

    (5) 受流场影响,燃烧过程呈现不对称性。

    3.2.1   压力变化过程

    选取与温度场同样的6个时间点,作受限空间的压力等值线, 如图 6所示。图 6(a)中,随着气体受热壁影响,压力开始在热壁上方上升,压缩受限空间的气体,使得受限空间的气体开始向四周流动。从图 6(b)(c)开始,热着火发生了,压力等值线开始变得稠密。模拟数据结果显示最大压力有1个多大气压,这与实验结果基本一致[13]图 6(d)中,压力等值线较弯曲,压缩两侧的气体,形状不规则。图 6(e)(f)的等值线在两侧非常稠密,说明随着气体燃烧强度的增大,两侧的弱冲击波已经形成。但是,燃烧火焰还主要在热壁的中上部,最高压力还处于中间,燃烧化学反应和气体流动的强烈耦合还需要更大的空间,所以总的压力并不高,模拟数据显示最高压力有3个多大气压。

    图  6  热着火压力等值线
    Figure  6.  Pressure contours of thermal ignition
    3.2.2   不同位置压力突变

    图 7是7个点的压力变化曲线,从图 7可知:(1)热着火发生前,7个点的压力变化不大;(2)热着火发生后,压力也存在阶段性突变特征。在同一时刻,7个点的压力不同,存在很大的差别;(3)从模拟的最后时刻的压力来看,第3~6点的压力很接近,而第7点压力很低,这也说明弱冲击波正在形成。

    图  7  7个点的压力变化曲线
    Figure  7.  Pressure variation curves at 7 spatial points
    3.3.1   主要反应物变化

    图 8是1号位置的主要反应物质量变化曲线。从图 8可知,t∈[0, 0.36] s时,主要反应物相差不大,它们的质量分数从0.01还降到了0.009 6,这主要是受热壁加热影响,密度下降的原因。t∈[0.36,0.415] s时,主要反应物呈现了明显的阶段性特征。第1阶段,从0.36 s到0.39 s,主要反应物发生了缓慢氧化反应,浓度呈现下降趋势,特别正庚烷发生了热裂解,质量分数几乎变为了零。第2阶段,从0.39 s到0.40 s,主要反应物质量分数有所增大。主要原因是密度回升,流场影响相对减弱,大分子热裂解成低碳烷烃的因素增加,造成了C1~C4的质量分数增大。第3阶段,从0.40 s到0.41 s,主要反应物发生反应被消耗,浓度降低。0.41 s后,热着火发生,反应速度增大,流场变化加剧,主要反应物质量分数呈现波动。

    图  8  1号位置反应物的质量分数变化曲线
    Figure  8.  Mass faction curve at the first spatial point
    3.3.2   不同位置的组分质量分数

    图 9~13为不同位置主要组分的质量分数变化曲线。从以上反应物在不同阶段的质量分数变化曲线可知:(1)t∈[0, 0.15] s阶段,主要生成物CO、H2O基本没有变化,但随后到0.39 s,这些生成物有较小量级增加,说明随着温度的增加,主要反应物发生了非常缓慢的氧化反应,特别是1号位置表现明显。(2)t∈[0.39, 0.41] s阶段,发生缓慢氧化阶段,生成物不断增加,组分的质量分数与反应强度,流场变化特征、空间位置关系紧密,CO、H2O等组分的质量分数总体增加,O2、轻质烷烃等组分质量分数总体减小,但波动较明显。(3)热着火发生后,主要受燃烧反应强度的影响,反应物减少,生成物增加。从OH基团的变化可以发现不同位置反应强度不同。

    图  9  不同位置C4H10的质量分数变化曲线
    Figure  9.  Mass faction curves of C4H10 at different positions
    图  10  不同位置OH的质量分数变化曲线
    Figure  10.  Mass faction curves of OH at different positions
    图  11  不同位置CO的质量分数变化曲线
    Figure  11.  Mass faction curves of CO at different positions
    图  12  不同位置H2O的质量分数变化曲线
    Figure  12.  Mass faction curves of H2O at different positions
    图  13  不同位置O2的质量分数变化曲线
    Figure  13.  Mass faction curves of O2 at different positions

    综上,受限空间油气热着火发生过程中,无论是缓慢氧化阶段,还是热着火发生过程中,整个受限空间内气体都受到了化学反应和流动的耦合作用,气体间化学反应不断加剧,流动不断增强。但从所起的主导作用来看,加热初期,辐射换热为主导作用;在加热中期,辐射换热和缓慢氧化反应为主导作用;在热着火发生阶段,化学反应和流动强烈耦合,同时占主导作用。

    3.4.1   层流火焰速度

    图 14~17为不同位置流场速度变化曲线。由横轴方向层流速度来看:热着火发生前,速度很小,仅有每秒几个厘米,左右流动也基本对称;受受限空间影响,气体流动发生了回流,两侧气体呈现向中间流动的现象。在0.405 s后,热着火发生,形成弱冲击波,气体向两侧流动。速度超过了100 cm/s。从第1和第2点的流动方向来看,热着火发生前,火焰基本呈振动状态,方向不断摆动,热着火发生后火焰偏向右侧,说明有湍流影响流动方向。由纵轴方向的层流速度来看:与横向速度比较,开始加热阶段,最大速度略大,而后受上壁面影响,速度相对减小。起燃阶段,速度方向总体向上,呈现震荡特征。

    图  14  初始阶段横轴方向火焰速度变化曲线
    Figure  14.  Velocity of the flame in x direction at initial stage
    图  15  发生阶段横轴方向火焰速度变化曲线
    Figure  15.  Velocity of the flame in x direction at occurrence stage
    图  16  初始阶段纵轴方向火焰速度变化曲线
    Figure  16.  Velocity of the flame in y direction at initial stage
    图  17  发生阶段纵轴方向火焰速度变化曲线
    Figure  17.  Velocity of the flame in y direction at occurrence stage
    3.4.2   湍流火焰速度

    图 18为不同位置湍流变化曲线。湍流也出现了2个阶段的特征:在加热开始阶段,湍流突然增大,而后略有降低;当热着火发生时,湍流急剧增大。

    图  18  发生阶段火焰湍流速度曲线
    Figure  18.  Turbulent velocity of the flame at occurrence stage

    油气在热壁下的热着火发生过程主要受辐射放热、化学反应和流动的耦合作用,呈现出阶段性。在高温热壁加热初始阶段,加热使得气体膨胀,同时气体温度升高。流动改变了流场流动特征,造成受限空间中组分浓度、流速等参数的变化,辐射放热和流动成为主导作用;在热着火发生前,随着辐射放热进行,热壁上方温度升高,油气缓慢氧化反应放热逐渐成为影响流场特征的主导作用。在热着火发生后,剧烈化学反应和高强度湍流相互耦合,弱冲击波瞬间形成,化学反应和流动同时占主导作用,气体的温度、压力、质量分数、湍流强度等参数均呈现出一定的震荡和非线性特性。

  • 图  1  发射药颗粒替换黏结过程

    Figure  1.  Replacement and forming bond process of propellant particle

    图  2  Hertz-Mindlin无滑动接触模型

    Figure  2.  Hertz-Mindlin non-sliding contact model

    图  3  Hertz-Mindlin黏结接触模型

    Figure  3.  Hertz-Mindlin bonding contact model

    图  4  发射装药离散单元力学模型

    Figure  4.  Discrete element mechanical model of propellant charge

    图  5  上盖板压力时间曲线

    Figure  5.  Pressure-time curve of upper cover plate

    图  6  发射装药动态挤压破碎实验装置及原理图

    Figure  6.  Experiment device and schematic diagram of the dynamic compression and fracture of propellant charge

    图  7  实验发射装药

    Figure  7.  Experiment propellant charge

    图  8  低温下实验获得的破碎发射装药

    Figure  8.  Fracture propellant charge obtained by experiments at low temperature

    图  9  采用离散单元法模型获得的挤压破碎模拟结果

    Figure  9.  Compression and fracture simulation results with the discrete element model

    图  10  采用黏结键模型得到的挤压破碎模拟结果

    Figure  10.  Compression and fracture simulation results with the bond model

    图  11  不同燃烧室压力下模拟与实验挤压应力对比曲线

    Figure  11.  Comparison of compression stress curves between simulation and experiment under different chamber pressures

    图  12  密闭爆发器数值模拟与实验压力时间对比曲线

    Figure  12.  Comparison of simulated and experiment pressure-time curves in the closed bomb

    表  1  数值模拟参数与结果

    Table  1.   Model parameters and simulation results

    序号法向黏结刚度/(GN·m−3切向黏结刚度/(GN·m−3法向临界应力/MPa切向临界应力/MPa最大应力/MPa
    1449.55134.8712036.087.31
    2449.55134.8712537.590.95
    3449.55134.8713039.095.31
    4449.55134.8713540.598.24
    5449.55134.8714042.0102.67
    6449.55134.8715045.0110.14
    下载: 导出CSV

    表  2  实验条件和结果

    Table  2.   Experiment conditions and results

    序号燃烧室最大压力/MPa挤压应力峰值/MPa
    137.46 3.96
    240.4311.06
    344.8115.35
    下载: 导出CSV

    表  3  数值模拟结果

    Table  3.   Simulation results

    序号挤压应力峰值/MPa黏结键连接个数
    1 3.9218 498
    2 9.1415 190
    313.3412 233
    下载: 导出CSV

    表  4  数值模拟与实验起始动态活度比对比

    Table  4.   Comparision of initial dynamic vivacity ratios in simulation and experiment

    序号数值模拟的起始动态活度比实验的起始动态活度比误差/%
    11.1441.1893.78
    21.5701.6283.56
    31.9422.0676.05
    下载: 导出CSV
  • [1] 芮筱亭, 贠来峰, 王国平, 等. 弹药发射安全性导论[M]. 北京: 国防工业出版社, 2009: 1–5.

    RUI X T, YUN L F, WANG G P, et al. Direction to lanch safety of ammunition [M]. Beijing: National Defense Industry Press, 2009: 1–5.
    [2] 芮筱亭, 冯宾宾, 王燕, 等. 发射装药发射安全性评定方法研究 [J]. 兵工学报, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.

    RUI X T, FENG B B, WANG Y, et al. Research on evaluation method for launch safety of propellant charge [J]. Acta Armamentarii, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.
    [3] GAZONAS G A, FORD J C. Uniaxial compression testing of M30 and JA2 gun propellant using a statistical design strategy [J]. Experimental Mechanics, 1992, 32(2): 154–162. DOI: 10.1007/BF02324727.
    [4] 陈言坤, 甄建伟, 武慧恩, 等. 粒状发射药动态破碎研究进展 [J]. 爆破器材, 2014, 43(1): 43–48. DOI: 10.3969/j.issn.1001-8352.2014.01.010.

    CHEN Y K, ZHEN J W, WU H E, et al. Research progress of dynamic fracture of granular propellant [J]. Explosive Materials, 2014, 43(1): 43–48. DOI: 10.3969/j.issn.1001-8352.2014.01.010.
    [5] CUNDALL P A. A computer model for simulating progressive, large-scale movements in block rock systems [C] // Symposium of International Society of Rock Mechanics. Nancy, France, 1971.
    [6] JIANG S P, RUI X T, HONG J, et al. Numerical simulation of impact breakage of gun propellant charge [J]. Granular Matter, 2011, 13(5): 611–622. DOI: 10.1007/s10035-011-0276-1.
    [7] 王燕, 芮筱亭, 宋振东, 等. 初始堆积对发射装药底部挤压应力的影响 [J]. 爆炸与冲击, 2014, 34(5): 560–566. DOI: 10.11883/1001-1455(2014)05-0560-07.

    WANG Y, RUI X T, SONG Z D, et al. Effect of original packing on compression stress at the bottom of propellant bed [J]. Explosion and Shock Waves, 2014, 34(5): 560–566. DOI: 10.11883/1001-1455(2014)05-0560-07.
    [8] EDEM tutorial [M]. Edinburgh: DEM Solutions, 2011.
    [9] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. DOI: 10.1016/j.ijrmms.2004.09.011.
    [10] QUIST J. Cone crusher modelling and simulation [D]. Göteborg: Chalmers University of Technology, 2012: 1–45.
    [11] 夏露. 高能材料结构和性能的分子动力学模拟[D]. 苏州: 苏州大学, 2008: 46.

    XIA L. Molecular dynamics simulations of the structures and properties of highly energetic materials [D]. Suzhou: Suzhou University, 2008: 46.
    [12] 徐浩, 芮筱亭, 郁兆华, 等. 发射装药挤压应力与破碎规律研究 [J]. 火炸药学报, 2012, 35(4): 61–68. DOI: 10.3969/j.issn.1007-7812.2012.04.016.

    XU H, RUI X T, YU Z H, et al. Study on extrusion stress and fracture law of propellant charge [J]. Chinese Journal of Explosives and Propellants, 2012, 35(4): 61–68. DOI: 10.3969/j.issn.1007-7812.2012.04.016.
    [13] ZHANG R H, RUI X T, WANG Y, et al. Study on the change of gas generation law caused by fracture of propellant charge [J]. Journal of Energetic Materials, 2018, 36(4): 454–467. DOI: 10.1080/07370652.2018.1486895.
  • 加载中
推荐阅读
基于简易冲击分解模型的爆轰驱动硅橡胶数值模拟及实验解读
刘军 等, 爆炸与冲击, 2025
露天矿富水裂隙岩体台阶爆破的殉爆机理和防殉爆研究
费鸿禄 等, 爆炸与冲击, 2025
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
航空发动机钛合金机匣包容性数值仿真研究
曹苗 等, 爆炸与冲击, 2025
热塑性纤维金属层合板舱内爆炸响应数值模拟
周沪 等, 高压物理学报, 2022
天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究
刘效洲 等, 广东工业大学学报, 2023
基于格子玻尔兹曼方法的横向交变质量力对核沸腾影响的数值分析
陈启明 等, 能源研究与信息, 2024
Bond behavior between steel bar and strain-hardening fiber-reinforced cementitious composites under fatigue loading
Li, Qing-Hua et al., ENGINEERING STRUCTURES, 2024
Synergic sensing of light and heat emitted by offshore oil and gas platforms in the south china sea
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024
Biochar-enhanced removal of naphthenic acids from oil sands process water: influence of feedstock and chemical activation
ENERGY & ENVIRONMENTAL SUSTAINABILITY, 2025
Powered by
图(12) / 表(4)
计量
  • 文章访问数:  768
  • HTML全文浏览量:  403
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 修回日期:  2020-09-16
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-06-05

目录

/

返回文章
返回