方槽型纵骨船舶抗冰结构冰撞动响应实验研究

刘俊杰 刘昆 从曙光 董海波 夏劲松

刘俊杰, 刘昆, 从曙光, 董海波, 夏劲松. 方槽型纵骨船舶抗冰结构冰撞动响应实验研究[J]. 爆炸与冲击, 2021, 41(6): 065101. doi: 10.11883/bzycj-2020-0168
引用本文: 刘俊杰, 刘昆, 从曙光, 董海波, 夏劲松. 方槽型纵骨船舶抗冰结构冰撞动响应实验研究[J]. 爆炸与冲击, 2021, 41(6): 065101. doi: 10.11883/bzycj-2020-0168
LIU Junjie, LIU Kun, CONG Shuguang, DONG Haibo, XIA Jinsong. Experimental study on dynamic response of an anti-ice hull structurewith square groove longitudinals under ice impact[J]. Explosion And Shock Waves, 2021, 41(6): 065101. doi: 10.11883/bzycj-2020-0168
Citation: LIU Junjie, LIU Kun, CONG Shuguang, DONG Haibo, XIA Jinsong. Experimental study on dynamic response of an anti-ice hull structurewith square groove longitudinals under ice impact[J]. Explosion And Shock Waves, 2021, 41(6): 065101. doi: 10.11883/bzycj-2020-0168

方槽型纵骨船舶抗冰结构冰撞动响应实验研究

doi: 10.11883/bzycj-2020-0168
基金项目: 工信部高技术船舶科研项目(工信部装函[2017] 614号)
详细信息
    作者简介:

    刘俊杰(1978- ),男,博士,高级工程师,junjie197803@163.com

  • 中图分类号: O342; U661.43

Experimental study on dynamic response of an anti-ice hull structurewith square groove longitudinals under ice impact

  • 摘要: 针对船舶冰区航行受冰体撞击结构损伤问题,以一种涉冰带船肩处船体板架结构为原型,提出了一种方槽型纵骨船舶抗冰结构型式。利用落锤冲击实验测试系统,对抗冰和原型加筋板架在相同冰体撞击工况下的结构动响应进行了实验研究,采用MSC.Dytran程序对板架受冰体撞击过程开展数值模拟,并与实验结果进行对比。结果表明,相同冰体撞击工况下,抗冰板架结构产生的撞击力比原型板架略大,冰体造成的抗冰板架结构最大凹陷深度小于原型板架。从船体外板结构损伤程度及对船体内部构件、设备防护作用的角度考虑,抗冰结构较原型具有一定的抗冰效果。研究成果可为冰区航行船或破冰船的抗冰结构设计提供参考。
  • 图  1  船体原型结构和简化加筋板架结构

    Figure  1.  Hull structure and simplified stiffened plate structure

    图  2  方槽型纵骨抗冰板架结构和纵骨横剖面

    Figure  2.  An anti-ice plate structure with square groove longitudinals and its transverse section

    图  3  实验装置和试件固定支座

    Figure  3.  Experimental system and supporter for fixing specimens

    图  4  原型加筋板架

    Figure  4.  A prototype stiffened plate

    图  5  抗冰加筋板架

    Figure  5.  An anti-ice stiffened plate

    图  6  冰体锤头实验模型

    Figure  6.  The experimental model of the ice hammer head

    图  7  实验前模型状态和板架受冰体撞击区域

    Figure  7.  The model state before experiment and the impact zone on the stiffened plate

    图  8  撞击过程中的冰体破碎过程

    Figure  8.  Ice breaking in the process of impact

    图  9  原型结构板架变形

    Figure  9.  Structural deformation of the prototype stiffened plate

    图  10  抗冰结构板架变形

    Figure  10.  Structural deformation of the anti-ice stiffened plate

    图  11  外板凹陷变形量

    Figure  11.  Shell plate depression

    图  12  不同板架结构锤体的加速度曲线

    Figure  12.  Acceleration curves of hammers with different plates

    图  13  不同工况下锤体的加速度曲线

    Figure  13.  Acceleration curves of hammers in different cases

    图  14  原型结构板架变形实验与模拟结果对比

    Figure  14.  Comparison of prototype structural deformation between experiment and simulation results

    图  15  抗冰结构板架变形实验与模拟结果对比

    Figure  15.  Comparison of anti-ice structural deformation between experiment and simulation results

    图  16  撞击力的实验和模拟结果对比

    Figure  16.  Comparison of impact forces between experiment and simulation results

    表  1  原型纵骨与方槽型纵骨结构参数对比

    Table  1.   Comparison of structural parameters between two kinds of longitudinals

    纵骨类型尺寸/mm板厚/mm横截面积/mm2质量差/%
    原型纵骨腹板126腹板71232.2
    面板 26面板13.2
    方槽型纵骨方槽边长606.851233 0.064 9
    下载: 导出CSV
  • [1] LIU Z H, AMDAHL J, LØSET S. Integrated numerical analysis of an iceberg collision with a foreship structure [J]. Marine Structures, 2011, 24(4): 377–395. DOI: 10.1016/j.marstruc.2011.05.004.
    [2] INCE S T, KUMAR A, PARK D K, et al. An advanced technology for structural crashworthiness analysis of a ship colliding with an ice-ridge: numerical modelling and experiments [J]. International Journal of Impact Engineering, 2017, 110: 112–122. DOI: 10.1016/j.ijimpeng.2017.02.014.
    [3] KIM J H, KIM Y, KIM H S, et al. Numerical simulation of ice impacts on ship hulls in broken ice fields [J]. Ocean Engineering, 2019, 182: 211–221. DOI: 10.1016/j.oceaneng.2019.04.040.
    [4] 张健, 万正权, 陈聪. 船-冰碰撞载荷下球鼻艏结构动态响应研究 [J]. 船舶力学, 2014, 18(1−2): 106–114. DOI: 10.3969/j.issn.1007-7294.2014.h1.014.

    ZHANG J, WAN Z Q, CHEN C. Research on structure dynamic response of bulbous bow in ship-ice collision load [J]. Journal of Ship Mechanics, 2014, 18(1−2): 106–114. DOI: 10.3969/j.issn.1007-7294.2014.h1.014.
    [5] 张健, 王甫超, 刘海东, 等. 水介质中船体板架模型与冰体碰撞试验研究 [J]. 船舶力学, 2020, 24(4): 492–500. DOI: 10.3969/j.issn.1007-7294.2020.04.009.

    ZHANG J, WANG F C, LIU H D, et al. Experimental study on collision of hull plate model and ice in water medium [J]. Journal of Ship Mechanics, 2020, 24(4): 492–500. DOI: 10.3969/j.issn.1007-7294.2020.04.009.
    [6] Finnish Maritime Administration. Finnish-Swedish ice class rules: Bulletin No. 13/1.10. 2002 [R]. 2002.
    [7] American Bureau of Shipping. ABS 2 polar waters guide: 2008 guide for building and classing vessels intended for navigation in polar waters [S]. 2008.
    [8] IACS. Requirements concerning polar class [S]. 2011.
    [9] 李丹, 杨春萍, 杜兆阳. LNG船舷侧抗冰撞性结构设计 [J]. 船舶物资与市场, 2019(11): 17–19. DOI: 10.19727/j.cnki.cbwzysc.2019.11.001.

    LI D, YANG C P, DU Z Y. Anti-ice impact side structure design of LNG ship [J]. Marine Equipment/Materials and Marketing, 2019(11): 17–19. DOI: 10.19727/j.cnki.cbwzysc.2019.11.001.
    [10] 陈聪. 冰撞载荷作用下船体结构抗冲击设计研究[D]. 镇江: 江苏科技大学, 2015: 61−72.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  238
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 修回日期:  2020-08-06
  • 网络出版日期:  2021-05-27
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回