接触爆炸荷载对钢筋混凝土梁的局部毁伤效应

王辉明 刘飞 晏麓晖 汪剑辉 尚伟 吕林梅

王辉明, 刘飞, 晏麓晖, 汪剑辉, 尚伟, 吕林梅. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应[J]. 爆炸与冲击, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171
引用本文: 王辉明, 刘飞, 晏麓晖, 汪剑辉, 尚伟, 吕林梅. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应[J]. 爆炸与冲击, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171
WANG Huiming, LIU Fei, YAN Luhui, WANG Jianhui, SHANG Wei, LYU Linmei. Local damage effects of reinforced concrete beams under contact explosions[J]. Explosion And Shock Waves, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171
Citation: WANG Huiming, LIU Fei, YAN Luhui, WANG Jianhui, SHANG Wei, LYU Linmei. Local damage effects of reinforced concrete beams under contact explosions[J]. Explosion And Shock Waves, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171

接触爆炸荷载对钢筋混凝土梁的局部毁伤效应

doi: 10.11883/bzycj-2020-0171
详细信息
    作者简介:

    王辉明(1995- ),男,硕士研究生,whui_ming@126.com

    通讯作者:

    刘 飞(1977- ),男,博士,高级工程师, 13525944181@163.com

  • 中图分类号: O383

Local damage effects of reinforced concrete beams under contact explosions

  • 摘要: 为得到接触爆炸下钢筋混凝土(reinforced concrete,RC)梁的局部破坏模式和毁伤效应,对同一尺寸的RC梁进行了不同装药量的接触爆炸试验研究。试验中采用框架结构中典型工程尺度RC原型梁为研究对象,通过4次爆炸试验,观测了RC梁在不同装药量下的局部破坏模式和破坏特征,分析了装药量对局部毁伤效应的影响。研究结果表明:接触爆炸荷载作用下,RC梁将发生正面成坑、侧面崩落、背面震塌和截面冲切等局部破坏模式,爆坑深度、震塌厚度、表面毁伤面积以及受压区纵筋变形均与装药量立方根近似呈线性增加关系。在试验数据基础上,将RC梁局部毁伤程度划分为轻度毁伤、中度毁伤、重度毁伤和严重毁伤4个等级,采用比例装药量判据进行评估。研究成果可为抗爆结构设计和结构毁伤评估提供理论依据。
  • 图  1  试验梁结构尺寸及配筋图(单位:mm)

    Figure  1.  Dimensions and reinforcment diagram of RC beam (unit in mm)

    图  2  试验布置

    Figure  2.  Experimental arrangement

    图  3  试验用TNT装药

    Figure  3.  TNT charges used in experiment

    图  4  4 kg装药接触爆炸下梁1# 破坏形态

    Figure  4.  Failure patterns of beam 1# under contact explosion of 4 kg charge

    图  5  6 kg装药接触爆炸下梁2# 破坏形态

    Figure  5.  Failure patterns of beam 2# under contact explosion of 6 kg charge

    图  6  8 kg装药接触爆炸下梁3# 破坏形态

    Figure  6.  Failure patterns of beam 3# under contact explosion of 8 kg charge

    图  7  16 kg装药接触爆炸下梁4# 破坏形态

    Figure  7.  Failure patterns of beam 4# under contact explosion of 16 kg charge

    图  8  爆坑形状

    Figure  8.  Crater shape

    图  9  震塌投影变化

    Figure  9.  Change tendency of Lz/L

    图  10  表面毁伤形状示意图

    Figure  10.  Schematic diagram of surface damage shape

    图  11  横截面破坏面积比

    Figure  11.  Ratios of damage area to cross-section

    图  12  迎爆面X1$X'_1 $X2随装药变化

    Figure  12.  Changes of X1, $X'_1 $ and X2 with charge

    表  1  表面毁伤特征参数(单位:mm)

    Table  1.   Surface damage characteristic parameters (unit: mm)

    试验$L_1/L'_1 $$L_2/L'_2 $$L_3/L'_3 $L4$H_1/H'_1 $$H_2/H'_2 $B1B2
    11 210/1 500800/8501 100/1 300560175/150100/90 100130
    21 260/1 4001 000/8001 480/1 450710 90/125100/125170100
    31 470/1 4401 270/1 2501 450/1 5001 000100/85100/120150130
    41 810/1 9001 500/1 3801 570/1 6901 040100/80150/150111 57
    下载: 导出CSV

    表  2  RC梁接触爆炸局部毁伤等级

    Table  2.   Local damage grades of RC beam under contact explosion

    试验编号毁伤等级破坏形态主要特征判别标准毁伤判据
    轻度毁伤迎爆面形成爆坑,纵向钢筋轻微变形;背爆面混凝土无层裂;侧面混凝土轻微剥落;梁整体无明显变形$h {\simfont\text{>}} 0,\;{h_{\rm z}} = 0$${Q^{1/3}}/H {\simfont\text{<}} 2.1$
    中度毁伤迎爆面形成爆坑,纵向钢筋适量变形;背爆面混凝土有碎块震塌、纵向钢筋外露但变形较小,或混凝土出现层裂裂纹(加强型);侧面混凝土部分剥落;梁整体轻度变形轻微变形(加强型)$0 {\simfont\text{<}} h + {h_{\rm z}} {\simfont\text{<}} H/2$$2.1 {\simfont\text{<}} {Q^{1/3}}/H {\simfont\text{≤}} {\rm{2}}{\rm{.5}}$
    1#、2#重度毁伤迎爆面爆坑较大,纵向钢筋较大变形;背爆面混凝土震塌脱落、爆坑与震塌坑连通,或混凝土有碎块脱落、局部钢筋外露(加强型);侧面混凝土严重剥离;梁整体变形明显或轻度变形(加强型)$H/2 {\simfont\text{≤}} h + {h_{\rm z}} {\simfont\text{<}} H$$2.{\rm{5}} {\simfont\text{≤}} {Q^{1/3}}/H {\simfont\text{<}} {\rm{3}}{\rm{.8}}$
    3#、4#严重毁伤混凝土贯穿破坏,迎爆面纵向钢筋变形很大或断裂;背爆面混凝土大量震塌脱落、纵向钢筋大变形。特别严重时,横截面冲切破坏,迎、背爆面纵向钢筋都有剪断,梁倒塌$h + {h_{\rm z}} {\simfont\text{>}} H$${Q^{1/3}}/H {\simfont\text{>}} {\rm{3}}{\rm{.8}}$
     注:所谓加强型,指本文研究的采用腰筋和侧面底筋加固的梁
    下载: 导出CSV
  • [1] SHI Y F, STEWART M G. Damage and risk assessment for reinforced concrete wall panels subjected to explosive blast loading [J]. International Journal of Impact Engineering, 2015, 85(11): 5–19. DOI: 10.1016/j.ijimpeng.2015.06.003.
    [2] SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90(4): 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002.
    [3] ALOK D, ABASS B, MANISH K. Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects [J]. Engineering Structures, 2020, 205(15): 109891. DOI: 10.1016/j.engstruct.2019.109891.
    [4] ZHANG D, YAO S J, LU F Y, et al. Experimental study on scaling of RC beams under close-in blast loading [J]. Engineering Failure analysis, 2013, 33(10): 497–504. DOI: 10.1016/j.engfailanal.2013.06.020.
    [5] 汪维, 刘瑞朝, 吴飚, 等. 爆炸荷载作用下钢筋混凝土梁毁伤判据研究 [J]. 兵工学报, 2016, 37(8): 1421–1429. DOI: 10.3969/j.issn.1000-1093.2016.08.012.

    WANG W, LIU R C, WU B, et al. Damage criteria of reinforced concrete beams under blast loading [J]. Acta Armamentarii , 2016, 37(8): 1421–1429. DOI: 10.3969/j.issn.1000-1093.2016.08.012.
    [6] YAO S J, ZHANG D, LU F Y, et al. Damage features and dynamic response of RC beams under blast [J]. Engineering Failure Analysis, 2016, 62(4): 103–111. DOI: 10.1016/j.engfailanal.2015.12.001.
    [7] RAO B, CHEN L, FANG Q, HONG J, et al. Dynamic responses of reinforced concrete beams under double-endinitiated close-in explosion [J]. Defence Technology, 2018, 14(5): 527–539. DOI: 10.1016/j.dt.2018.07.024.
    [8] 李忠献, 师燕超, 史祥生. 爆炸荷载作用下钢筋混凝土板破坏评定方法 [J]. 建筑结构学报, 2009, 30(6): 60–66. DOI: 10.14006/j.jzjgxb.2009.06.008.

    LI Z X, SHI Y C, SHI X S. Damage analysis and assessment of RC slabs under blast load [J]. Journal of Building Structures, 2009, 30(6): 60–66. DOI: 10.14006/j.jzjgxb.2009.06.008.
    [9] ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2013, 63-64(2-4): 54–62. DOI: 10.1016/j.tafmec.2013.03.006.
    [10] YAO S J, ZHANG D, CHEN X G, et al. Experimental and numerical study on the dynamic response of RC slabs under blast loading [J]. Engineering Failure Analysis, 2016, 66(8): 120–129. DOI: 10.1016/j.engfailanal.2016.04.027.
    [11] 郑全平, 周早生, 钱七虎, 等. 防护结构中的震塌问题 [J]. 岩石力学与工程学报, 2003(8): 1393–1398. DOI: 10.3321/j.issn:1000-6915.2003.08.031.

    ZHENG Q P, ZHOU Z S, QIAN Q H, et al. Spallation in protective structures [J]. Chinese Journal of Rock Mechanics and Engineering, 2003(8): 1393–1398. DOI: 10.3321/j.issn:1000-6915.2003.08.031.
    [12] 张想柏, 杨秀敏, 陈肇元, 等. 接触爆炸钢筋混凝土板的震塌效应 [J]. 清华大学学报(自然科学版), 2006, 46(6): 765–768. DOI: 10.16511/j.cnki.qhdxxb.2006.004.

    ZHANG X B, YANG X M, CHEN Z Y, et al. Explosion spalling of reinforced concrete slabs with contact detonations [J]. Journal of Tsinghua University (Science and Technology) , 2006, 46(6): 765–768. DOI: 10.16511/j.cnki.qhdxxb.2006.004.
    [13] 岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.

    YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion [J]. Explosion and Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.
    [14] 徐金贵. 混凝土接触爆炸破坏效应研究[D].四川绵阳: 西南科技大学, 2019.
    [15] HONG J, FANG Q, CHEN L, et al. Numerical predictions of concrete slabs under contact explosion by modified K&C material model [J]. Construction and Building Materials, 2017, 155: 1013–1024. DOI: 10.1016/j.conbuildmat.2017.08.060.
    [16] ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196(1): 109337. DOI: 10.1016/j.engstruct.2019.109337.
    [17] 王晓峰, 郑全平, 吴飚, 等. 接触爆炸条件下钢筋混凝土梁实验及数值模拟研究[C] // 第4届全国工程安全与防护学术会议论文集. 洛阳, 2014: 160-166.

    WANG X F, ZHENG Q P, WU B, et al. Experimental Study and numerical simulation for reinforced concrete beam under contact explosion [C] // Proceedings of the 4th National Engineering Safety and Protection Conference. Luoyang, 2014: 160−166.
    [18] HANG G Z, YAN BO, YANG Z. Damage model test of prestressed T-beam under explosion load [J]. IEEE Access, 2019, 99(1): 135340. DOI: 10.1109/ACCESS.2019.2940037.
    [19] LI Z, LIU L, YAN J B, et al. Experimental investigation of p-section concrete beams under contact explosion and close-in explosion conditions [J]. Defence Technology, 2018, 14(5): 540–549. DOI: 10.1016/j.dt.2018.07.025.
    [20] ANDREW R, NICOLA B, GIUSEPPE C, et al. Full scale experimental tests and numerical model validation of reinforced concrete slab subjected to direct contact explosion [J]. International Journal of Impact Engineering, 2019, 132(10): 103309.1. DOI: 10.1016/j.ijimpeng.2019.05.023.
    [21] 美国陆军工程兵水道试验站. 常规武器防护设计原理[M]. 方秦, 译. 南京: 解放军工程兵工程学院, 1997.
    [22] 蒋洋, 王晓谋, 郭建坤, 等. 基于滑移线场理论斜坡条基极限承载力解析解 [J]. 地下空间与工程学报, 2018, 14(1): 92–100.

    JIANG Y, WANG X M, GUO J K, et al. Analytical solutions of ultimate bearing capacity for strip foundations on slopes based on slip line theories [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 92–100.
    [23] MORISHITA M, TANAKA H, ITO M, et al. Damage of reinforced concrete slabs subjected to contact detonations [J]. Journal of Structural Engineering, 2000, 46: 1787–1797.
    [24] ALOK D, ABASS B. Assessment of reinforced concrete slab response to contact explosion effects [J]. Journal of Performance of Constructed Facilities, 2020, 34(4): 04020061. DOI: 10.1061/(asce)cf.1943-5509.0001469.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1810
  • HTML全文浏览量:  1557
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 修回日期:  2020-09-01
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回