爆炸冲击下珊瑚砂动态本构模型

董凯 任辉启 阮文俊 黄魁 步鹏飞

董凯, 任辉启, 阮文俊, 黄魁, 步鹏飞. 爆炸冲击下珊瑚砂动态本构模型[J]. 爆炸与冲击, 2021, 41(4): 043101. doi: 10.11883/bzycj-2020-0172
引用本文: 董凯, 任辉启, 阮文俊, 黄魁, 步鹏飞. 爆炸冲击下珊瑚砂动态本构模型[J]. 爆炸与冲击, 2021, 41(4): 043101. doi: 10.11883/bzycj-2020-0172
DONG Kai, REN Huiqi, RUAN Wenjun, HUANG Kui, BU Pengfei. Dynamic constitutive model of coral sand under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043101. doi: 10.11883/bzycj-2020-0172
Citation: DONG Kai, REN Huiqi, RUAN Wenjun, HUANG Kui, BU Pengfei. Dynamic constitutive model of coral sand under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043101. doi: 10.11883/bzycj-2020-0172

爆炸冲击下珊瑚砂动态本构模型

doi: 10.11883/bzycj-2020-0172
详细信息
    作者简介:

    董 凯(1989- ),男,博士研究生,dongkai@njust.edu.cn

    通讯作者:

    任辉启(1953- ),男,博士,研究员,plaxiefang@163.com

  • 中图分类号: O347.3

Dynamic constitutive model of coral sand under blast loading

  • 摘要: 以珊瑚砂为主要覆盖域的岛礁在面临动力灾变时,确定岛礁工程抵抗极端冲击荷载的阈值至关重要,珊瑚砂的动态本构关系是防护工程设计的关键要素。本文中,根据SHPB实验和静态压缩实验的结果,提出了一种基于应变率强化规律确定珊瑚砂物态方程的方法,并确定了珊瑚砂动态本构模型的参数。分别基于流体弹塑性模型和Perzyna黏塑性帽盖模型,结合LS-DYNA有限元程序,通过对侵彻和爆炸的数值计算,验证了模型的适用性。基于建立的模型,对不同相对密实度的珊瑚砂开展了侵彻和爆炸数值计算,结果表明,密实度对爆炸波的衰减影响较大、对侵彻深度的影响较小。
  • 图  1  确定屈服参数的摩尔圆

    Figure  1.  Mohr’s circle geometry used to determine yield surface parameters

    图  2  平均压力-体应变的拟合曲线

    Figure  2.  Average pressure-volumetric strain fitting curves

    图  3  在不同相对密实度下平均压力与体应变的关系

    Figure  3.  Average pressure-volumetric strain curves under different compactness levels

    图  4  黏塑性帽盖模型的屈服面

    Figure  4.  Yield surface for viscoplastic cap model

    图  5  弹丸形状和尺寸[25]

    Figure  5.  Projectile geometry[25]

    图  6  侵彻计算模型网格划分(靶体为部分显示)

    Figure  6.  Finite element mesh of calculated model (target is partially displayed)

    图  7  最终侵彻深度与入射速度的关系

    Figure  7.  Final penetration depth versus initial velocity

    图  8  不同入射速度时速度与深度的关系

    Figure  8.  Velocity versus penetration depth at different initial velocities

    图  9  珊瑚砂在不同时刻的压力场和弹丸产生的磨蚀区

    Figure  9.  Pressure fields of coral sand at diffident times and scratch area of projectile

    图  10  不同压实密度时速度与深度的关系

    Figure  10.  Velocity versus penetration depth under different compactness levels

    图  11  峰值压力的衰减

    Figure  11.  Calculated and experiment results of peak pressure attenuation

    图  12  两种模型压力波

    Figure  12.  Pressure waves calculated by two models

    图  13  计算模型

    Figure  13.  Numerical model

    图  14  不同相对密度时爆炸峰值压力与比例距离的关系

    Figure  14.  Peak pressure versus scaled distance under different compactness levels

    表  1  $D_{\rm r}=0.30 $时珊瑚砂的5#材料模型参数

    Table  1.   Parameters of 5# constitutive model for coral sand when $D_{\rm r}=0.30 $

    ρ/(g·cm−3G/MPaKu/MPaa0/kPa2a1/kPaa2
    1.178107.7647.384.7716.230.777
    ln(V/V000.020.100.150.200.250.300.400.500.60
    p/MPa02.35.88.511.715.8321.0336.4362.23105.09
    下载: 导出CSV

    表  2  $D_{\rm r}=0.60 $时珊瑚砂的5#材料模型参数

    Table  2.   Parameters of 5# constitutive model for coral sand when $D_{\rm r}=0.60 $

    ρ/(g·cm−3G/MPaKu/MPaa0/kPa2a1/kPaa2
    1.219125.2698.784.7716.230.777
    ln(V/V000.020.100.150.200.250.300.400.500.60
    p/MPa03.07.510.414.018.925.645.077.2132.3
    下载: 导出CSV

    表  3  $D_{\rm r}=0.90 $时珊瑚砂的5#材料模型参数

    Table  3.   Parameters of 5# constitutive model for coral sand when $D_{\rm r}=0.90 $

    ρ/(g·cm−3G/MPaKu/MPaa0/kPa2a1/kPaa2
    1.260158.9717.284.7716.230.777
    ln(V/V000.020.100.150.200.250.300.400.500.60
    p/MPa03.668.4310.8714.5119.5626.4846.8982.18141.09
    下载: 导出CSV

    表  4  $D_{\rm r}=0.30 $时珊瑚砂Perzyna黏塑性帽盖模型参数

    Table  4.   Perzyna viscoplastic cap model parameters of coral sand when $D_{\rm r}=0.30 $

    K/MPaG/MPaα/kPaβ/MPa−1γ/kPaθT/kPa
    125.2101.132.52.2071650.4161.2
    WD/GPa−1RX0/kPaη/μs−1f0/GPaN
    0.3655.585.15100.021201.0
    下载: 导出CSV
  • [1] 任辉启, 黄魁, 朱大明, 等. 南沙群岛珊瑚礁工程地质研究综述 [J]. 防护工程, 2015, 37(1): 63–78.

    REN H Q, HUANG K, ZHU D M, et al. Review of engineering geology of coral reef in Nansha Islands [J]. Protective Engineering, 2015, 37(1): 63–78.
    [2] 王建平, 马林建. 岛礁工程长期安全保障理论与技术研究进展 [J]. 防护工程, 2019, 41(3): 70–78.

    WANG J P, MA L J. Research progress of long-term safety theory and technology for reef engineering [J]. Protective Engineering, 2019, 41(3): 70–78.
    [3] 孙吉主, 汪稔. 钙质砂的耦合变形机制与本构关系探讨 [J]. 岩石力学与工程学报, 2002, 21(8): 1262–1266. DOI: 10.3321/j.issn:1000-6915.2002.08.030.

    SUN J Z, WANG R. Study on coupling deformation mechanism and constitutive relation for calcareous sand [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(8): 1262–1266. DOI: 10.3321/j.issn:1000-6915.2002.08.030.
    [4] 谷建晓, 杨钧岩, 王勇, 等. 基于南水模型的钙质砂应力-应变关系模拟 [J]. 岩土力学, 2019, 40(12): 4597–4606. DOI: 10.16285/j.rsm.2018.2087.

    GU J X, YANG J Y, WANG Y, et al. Simulation of carbonate sand with triaxial tests data based on modified model of south water double yield surface [J]. Rock and Soil Mechanics, 2019, 40(12): 4597–4606. DOI: 10.16285/j.rsm.2018.2087.
    [5] 曹梦, 叶剑红. 中国南海钙质砂蠕变-应力-时间四参数数学模型 [J]. 岩土力学, 2019, 40(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.

    CAO M, YE J H. Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.
    [6] LV Y R, LIU J G, XIONG Z M. One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 192–201. DOI: 10.1016/j.jrmge.2018.04.013.
    [7] LV Y R, WANG Y, ZUO D J. Effects of particle size on dynamic constitutive relation and energy absorption of calcareous sand [J]. Powder Technology, 2019, 356: 21–30. DOI: 10.1016/j.powtec.2019.07.088.
    [8] XIAO Y, LIU H, XIAO P, et al. Fractal crushing of carbonate sands under impact loading [J]. Géotechnique Letters, 2016, 6(3): 199–204. DOI: 10.1680/jgele.16.00056.
    [9] LV Y R, LI X, WANG Y. Particle breakage of calcareous sand at high strain rates [J]. Powder Technology, 2020, 336: 776–787. DOI: 10.1016/j.powtec.2020.02.062.
    [10] 徐学勇. 饱和钙质砂爆炸响应动力特性研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2009.
    [11] 曾惠泉, 杨秀敏, 焦云鹏, 等. 触地爆炸流体弹塑性模型数值计算 [J]. 爆炸与冲击, 1982, 2(2): 45–54.

    ZENG H Q, YANG X M, JIAO Y P, et al. The hydrodynamic elasto-plastic model calculation of the contact-burst ground shock [J]. Explosion and Shock Waves, 1982, 2(2): 45–54.
    [12] 温垚珂, 徐诚, 陈爱军. 高应变率下弹道明胶的本构模型研究 [J]. 兵工学报, 2014, 35(1): 128–133. DOI: 10.3969/j.issn.1000-1093.2014.01.019.

    WEN Y K, XU C, CHEN A J. Study of constitutive model of ballistic gelatin at high strain rate [J]. Acta Armamentarii, 2014, 35(1): 128–133. DOI: 10.3969/j.issn.1000-1093.2014.01.019.
    [13] TONG X L, TUAN C Y. Viscoplastic cap model for soils under high strain rate loading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 206–214. DOI: 10.1061/(ASCE)1090-0241(2007)133:2(206).
    [14] 丁育青. 非饱和黏土动态力学特性及其本构关系研究[D]. 长沙: 国防科学技术大学, 2013.
    [15] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual: volume II: material models: version 971 R6.0. 0 [Z]. Livermore Software Technology Corporation, 2012.
    [16] WANG J. Simulation of landmine explosion using LS-DYNA3D software: benchmark work of simulation of explosion in soil and air [R]. Australia: Weapons Systems Division Aeronautical and Maritime Research Laboratory, 2001.
    [17] FASANELLA E L, LYLE K H, JACKSON K E. Developing soil models for dynamic impact simulations[C] // Proceedings of the American Helicopter Society 65th Annual Forum. Grapevine, TX, 2009: 27–29.
    [18] 王志鹏, 李海超, 周双涛, 等. 黄土中爆炸空腔体积规律的数值模拟 [J]. 爆破, 2016, 33(4): 73–77, 126. DOI: 10.3963/j.issn.1001-487X.2016.04.013.

    WANG Z P, LI H C, ZHOU S T, et al. Numerical simulation of cavity volume rule of explosion in loess [J]. Blasting, 2016, 33(4): 73–77, 126. DOI: 10.3963/j.issn.1001-487X.2016.04.013.
    [19] 马林. 钙质土的剪切特性试验研究 [J]. 岩土力学, 2016, 37(S1): 309–316. DOI: 10.16285/j.rsm.2016.S1.041.

    MA L. Experimental study of shear characteristics of calcareous gravelly soil [J]. Rock and Soil Mechanics, 2016, 37(S1): 309–316. DOI: 10.16285/j.rsm.2016.S1.041.
    [20] 王亚松, 马林建, 李增, 等. 钙质砂强度与变形机制研究 [J]. 防护工程, 2018, 40(4): 31–35.

    WANG Y S, MA L J, LI Z, et al. Investigation on the deformation mechanism of calcareous sand [J]. Protective Engineering, 2018, 40(4): 31–35.
    [21] WRIGHT A. Tyre/soil interaction modelling within a virtual proving ground environment[D]. Cranfield: Cranfield University, 2012.
    [22] 文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究 [J]. 爆炸与冲击, 2019, 39(3): 033101. DOI: 10.11883/bzycj-2018-0015.

    WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand [J]. Explosion and Shock Waves, 2019, 39(3): 033101. DOI: 10.11883/bzycj-2018-0015.
    [23] 董凯, 任辉启, 阮文俊, 等. 珊瑚砂应变率效应研究 [J]. 爆炸与冲击, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.

    DONG K, REN H Q, RUAN W J, et al. Study on strain rate effect of coral sand [J]. Explosion and Shock Waves, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.
    [24] 席道瑛, 徐松林. 岩石物理与本构理论[M]. 合肥: 中国科学技术大学出版社, 2016.
    [25] 苗伟伟, 邱艳宇, 程怡豪, 等. 钙质砂侵彻试验与理论研究 [J]. 振动与冲击, 2019, 38(17): 232–237. DOI: 10.13465/j.cnki.jvs.2019.17.032.

    MIAO W W, QIU Y Y, CHENG Y H, et al. Penetration tests of calcareous sand and theoretical study [J]. Journal of Vibration and Shock, 2019, 38(17): 232–237. DOI: 10.13465/j.cnki.jvs.2019.17.032.
    [26] SHI C C, WANG M Y, ZHANG K L, et al. Semi-analytical model for rigid and erosive long rods penetration into sand with consideration of compressibility [J]. International Journal of Impact Engineering, 2015, 83: 1–10. DOI: 10.1016/j.ijimpeng.2015.04.007.
    [27] OMIDVAR M, MALIOCHE J D, BLESS S, et al. Phenomenology of rapid projectile penetration into granular soils [J]. International Journal of Impact Engineering, 2015, 85: 146–160. DOI: 10.1016/j.ijimpeng.2015.06.002.
    [28] 苗伟伟, 程怡豪, 文祝, 等. 不同头部形状弹体侵彻石英砂的试验研究 [J]. 防护工程, 2017, 39(5): 6–12.

    MIAO W W, CHENG Y H, WEN Z, et al. Experimental study on the penetration into silica sand by projectiles with different nose shape [J]. Protective Engineering, 2017, 39(5): 6–12.
    [29] 赵章泳, 邱艳宇, 王明洋, 等. 非饱和钙质砂中平面爆炸波传播试验研究 [J]. 防护工程, 2017, 39(3): 22–28.

    ZHAO Z Y, QIU Y Y, WANG M Y, et al. Experimental study on plane explosive wave propagation in unsaturated calcareous sand [J]. Protective Engineering, 2017, 39(3): 22–28.
    [30] 于潇, 陈力, 方秦. 一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用 [J]. 工程力学, 2019, 36(1): 44–52; 69. DOI: 10.6052/j.issn.1000-4750.2017.11.0867.

    YU X, CHEN L, FANG Q. A testing method on the attenuation of stress waves in loose porous media and its application to coral sand [J]. Engineering Mechanics, 2019, 36(1): 44–52; 69. DOI: 10.6052/j.issn.1000-4750.2017.11.0867.
    [31] YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave [J]. International Journal of Impact Engineering, 2019, 125: 63–82. DOI: 10.1016/j.ijimpeng.2018.11.004.
    [32] 王礼立, 董新龙. 聊聊动态塑性和黏塑性 [J]. 爆炸与冲击, 2020, 40(3): 031101. DOI: 10.11883/bzycj-2020-0024.

    WANG L L, DONG X L. Talk about dynamic plasticity and viscoplasticity [J]. Explosion and Shock Waves, 2020, 40(3): 031101. DOI: 10.11883/bzycj-2020-0024.
    [33] 崔溦, 宋慧芳, 张社荣, 等. 爆炸荷载作用下土中爆坑形成的数值模拟 [J]. 岩土力学, 2011, 32(8): 2523–2528. DOI: 10.3969/j.issn.1000-7598.2011.08.045.

    CUI W, SONG H F, ZHANG S R, et al. Numerical simulation of craters produced by explosion in soil [J]. Rock and Soil Mechanics, 2011, 32(8): 2523–2528. DOI: 10.3969/j.issn.1000-7598.2011.08.045.
    [34] ESMAEILI M, TAVAKOLI B. Finite element method simulation of explosive compaction in saturated loose sandy soils [J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 446–459. DOI: 10.1016/j.soildyn.2018.09.048.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  291
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 修回日期:  2020-08-21
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回