基于地震波触发的战斗部动爆冲击波试验研究

钞红晓 胡浩 雷强 高瑞 姚国庆

钞红晓, 胡浩, 雷强, 高瑞, 姚国庆. 基于地震波触发的战斗部动爆冲击波试验研究[J]. 爆炸与冲击, 2021, 41(8): 083201. doi: 10.11883/bzycj-2020-0196
引用本文: 钞红晓, 胡浩, 雷强, 高瑞, 姚国庆. 基于地震波触发的战斗部动爆冲击波试验研究[J]. 爆炸与冲击, 2021, 41(8): 083201. doi: 10.11883/bzycj-2020-0196
CHAO Hongxiao, HU Hao, LEI Qiang, GAO Rui, YAO Guoqing. Experimental study on shock wave from dynamic explosion of a warhead based on seismic wave triggering[J]. Explosion And Shock Waves, 2021, 41(8): 083201. doi: 10.11883/bzycj-2020-0196
Citation: CHAO Hongxiao, HU Hao, LEI Qiang, GAO Rui, YAO Guoqing. Experimental study on shock wave from dynamic explosion of a warhead based on seismic wave triggering[J]. Explosion And Shock Waves, 2021, 41(8): 083201. doi: 10.11883/bzycj-2020-0196

基于地震波触发的战斗部动爆冲击波试验研究

doi: 10.11883/bzycj-2020-0196
详细信息
    作者简介:

    钞红晓(1983- ),男,博士研究生,研究员,chaohongxiao@163.com

    通讯作者:

    雷 强(1991- ),男,硕士研究生,工程师,hyleiqiang@foxmail.com

  • 中图分类号: O382.1

Experimental study on shock wave from dynamic explosion of a warhead based on seismic wave triggering

  • 摘要: 提出了一种基于地震波触发的战斗部爆炸冲击波超压测试方法,该测试方法能可靠获取战斗部动爆冲击波超压峰值。采用提出的测试方法对着靶速度为0、535和980 m/s的战斗部空中爆炸冲击波分别进行了测试,并对战斗部动爆冲击波超压峰值测试结果和经验公式计算值进行了对比,定量分析了战斗部速度对冲击波压力场分布的影响。最后,在实测数据的基础上采用薄板样条插值方法重建了战斗部动爆冲击波超压三维可视化模型,为实战复杂环境下基于实测数据研究动爆冲击波特性提供了依据。
  • 图  1  测试系统

    Figure  1.  Test system

    图  2  地震波触发冲击波超压测试原理

    Figure  2.  The principle for measuring shock wave overpressure triggered by seismic wave

    图  3  冲击波超压峰值和传播时间差随距离的变化

    Figure  3.  Variation of shock wave overpressure peak and propagation time difference with distance

    图  4  试验测试的加速度曲线和超压峰值曲线

    Figure  4.  Test curves of acceleration and shock wave overpressure peak

    图  5  战斗部爆炸测点分布

    Figure  5.  Measuring points of blasting warhead explosion

    图  6  不同方向的冲击波超压时域曲线

    Figure  6.  Shock wave overpressure-time curves in different directions

    图  7  不同速度战斗部的冲击波超压峰值曲线

    Figure  7.  Shock wave overpressure peak curves of the blasting warheads with different velocities

    图  8  战斗部速度为0 m/s的冲击波超压峰值场分布

    Figure  8.  Shock wave overpressure field for the blasting warhead with the velocity of 0 m/s

    图  9  战斗部速度为535 m/s的冲击波超压峰值场分布

    Figure  9.  Shock wave overpressure field for the blasting warhead with the velocity of 535 m/s

    图  10  战斗部速度为980 m/s的冲击波超压峰值场分布

    Figure  10.  Shock wave overpressure field for the blasting warhead with the velocity of 980 m/s

    表  1  试验结果与理论值对比

    Table  1.   Comparison between experimental and theoretical results

    R/(m·kg−1/3θ/(°)v0=0 m/sv0=535 m/sv0=980 m/s
    pp,e/kPapp,d/kPaε/%pp,e/kPapp,d/kPaε/%pp,e/kPapp,d/kPaε/%
    4.710321.39317.351.26434.86355.5718.23483.16389.0219.48
    45343.49317.357.61384.34344.1510.46392.65367.286.46
    90342.92317.357.45285.10317.35−11.31288.32317.35−10.07
    135335.52317.355.41270.90291.64−7.65258.87271.08−4.72
    180320.94317.351.12228.45281.30−23.14187.89252.98−34.64
    225294.20317.35−7.87261.93291.64−11.34215.23271.08−25.95
    270296.57317.35−7.01285.98317.35−10.97294.97317.35−7.59
    315319.73317.350.74368.50344.156.61402.27367.288.70
    9.410112.04104.866.41127.36111.7012.30149.08117.5421.15
    45110.61104.865.19110.62109.670.86118.86113.764.30
    90100.10104.86−4.7696.52104.86−8.6596.21104.86−9.00
    135103.81104.86−1.0288.96100.16−12.5986.6996.34−11.13
    180106.88104.861.8990.3598.25−8.7575.8892.91−22.44
    225102.12104.86−2.6994.81100.16−5.6488.0696.34−9.40
    27098.28104.86−6.7099.25104.86−5.6698.10104.86−6.90
    315111.00104.865.53118.45109.677.41123.47113.767.86
    14.12063.8763.041.3174.8765.8512.0578.2368.2412.77
    4563.2363.040.3066.3565.022.0169.5666.694.12
    9057.7263.04−9.2159.1663.04−6.5559.0363.04−6.78
    13559.0863.04−6.7057.7561.08−5.7850.6359.48−17.48
    18060.5163.04−4.1751.7260.28−16.5645.7358.04−26.91
    22557.7563.04−9.1653.6961.08−13.7748.0659.48−23.77
    27057.7863.04−9.1059.5263.04−5.9257.5263.04−9.58
    31564.7363.042.6169.4265.026.3473.9866.699.85
    下载: 导出CSV
  • [1] 郭炜, 俞统昌, 王建灵. 空气冲击波压力的地面测量技术[C]//第三届全国爆炸力学实验技术交流会论文集. 合肥: 中国力学学会, 中国科学技术大学, 2004: 26.

    GUO W, YU T C, WANG J L. Ground measurement technology for air shock wave pressure [C]// Proceedings of the 3rd National Conference on Experimental Technology of Explosive Mechanics. Hefei: Chinese Society of Mechanics, University of Science and Technology of China, 2004: 26.
    [2] 杜红棉, 祖静. 无线冲击波超压测试系统研究 [J]. 火力与指挥控制, 2012, 37(1): 198–200. DOI: 10.3969/j.issn.1002-0640.2012.01.051.

    DU H M, ZU J. Research on wireless testing system of shock wave overpressure [J]. Fire Control and Command Control, 2012, 37(1): 198–200. DOI: 10.3969/j.issn.1002-0640.2012.01.051.
    [3] 黄正平. 爆炸与冲击电测技术[M]. 北京: 国防工业出版社, 2006: 54−55.

    HUANG Z P. Explosion and shock measuring technique [M]. Beijing: National Defense Industry Press, 2006: 54−55.
    [4] 蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究 [J]. 高压物理学报, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.

    JIANG H Y, LI Z R, ZHANG Y L, et al. Characteristics of air blast wave field for explosive charge moving at different velocities [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.
    [5] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.

    CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.
    [6] 郭亚丽, 韩焱, 王黎明. 基于广义逆算法的冲击波超压场重建方法 [J]. 爆炸与冲击, 2014, 34(6): 764–768. DOI: 10.11883/1001-1455(2014)06-0764-05.

    GUO Y L, HAN Y, WANG L M. Overpressure reconstruction of shock wave based on generalized inverse theory [J]. Explosion and Shock Waves, 2014, 34(6): 764–768. DOI: 10.11883/1001-1455(2014)06-0764-05.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  386
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-11-02
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回