仿生波纹夹层结构耐撞性分析及优化

黄晗 许述财 陈姮

黄晗, 许述财, 陈姮. 仿生波纹夹层结构耐撞性分析及优化[J]. 爆炸与冲击, 2021, 41(8): 083102. doi: 10.11883/bzycj-2020-0275
引用本文: 黄晗, 许述财, 陈姮. 仿生波纹夹层结构耐撞性分析及优化[J]. 爆炸与冲击, 2021, 41(8): 083102. doi: 10.11883/bzycj-2020-0275
HUANG Han, XU Shucai, CHEN Heng. Crashworthiness analysis and optimization of bionic corrugated sandwich structures[J]. Explosion And Shock Waves, 2021, 41(8): 083102. doi: 10.11883/bzycj-2020-0275
Citation: HUANG Han, XU Shucai, CHEN Heng. Crashworthiness analysis and optimization of bionic corrugated sandwich structures[J]. Explosion And Shock Waves, 2021, 41(8): 083102. doi: 10.11883/bzycj-2020-0275

仿生波纹夹层结构耐撞性分析及优化

doi: 10.11883/bzycj-2020-0275
基金项目: 国家自然科学基金(11902157);中国博士后科学基金(2018M641338);南京航空航天大学校人才科研启动基金(1011-YAH20001)
详细信息
    作者简介:

    黄 晗(1989- ),男,博士,副研究员,huanghan@nuaa.edu.cn

    通讯作者:

    许述财(1978-  ),男,博士,副研究员,xushc@tsinghua.edu.cn

  • 中图分类号: O383

Crashworthiness analysis and optimization of bionic corrugated sandwich structures

  • 摘要: 为提高薄壁夹层结构耐撞性,以虾螯为仿生原型,设计梯度分布的仿生波纹形夹层结构,包括单层、双层和三层波纹结构。以初始峰值载荷Fp、比吸能Es为耐撞性指标,利用有限元法分析了单元高宽比γγ1γ2γ3分别为单元第1层、第2层和第3层的高宽比)对波纹夹层结构耐撞性的影响,采用多目标粒子群优化方法得到了夹层结构最优参数。结果表明,单层波纹结构耐撞性随单元高宽比γ的增大逐渐变差,双层波纹结构下层结构单元高宽比γ对耐撞性的影响大于上层结构单元高宽比γ对耐撞性的影响,较小的γ值有利于提高三层波纹结构的比吸能。结构优化结果表明:单层结构最优尺寸γ1为0.8;双层结构最优尺寸为γ1 = 0.5和γ2 = 1.2;三层结构最优组合为γ1 = 0.6,γ2 = 0.6和γ3 = 0.9。上述结果可为薄壁夹层结构轻量化设计提供新思路。
  • 图  1  雀尾螳螂虾及其虾螯宏微观结构

    Figure  1.  Odontodactylus scyllarus and macro-micro structure of shrimp chela

    图  2  仿生波纹夹层结构(3层)

    Figure  2.  Bionic corrugated-core sandwich structure (three layers)

    图  3  仿生波纹夹层结构有限元模型

    Figure  3.  A finite element model for the bionic corrugated-core sandwich structure

    图  4  单层波纹结构峰值载荷和比吸能随高宽比变化关系

    Figure  4.  The initial peak load and specific energy absorption of single-layer structure versus with height-to-width ratios

    图  5  单层波纹结构变形

    Figure  5.  Deformation of single-layer structures

    图  6  双层波纹结构峰值载荷和比吸能随高宽比变化关系

    Figure  6.  The initial peak load and specific energy absorption of double-layer structure versus with height-to-width ratios

    图  7  不同结构的峰值载荷和比吸能模型预测值变化

    Figure  7.  The initial peak load and specific energy absorption predicted by the models for different structures

    图  8  优化结果粒子群边界

    Figure  8.  Particle swarm boundaries of optimization results

    图  9  最优结果验证

    Figure  9.  Validation for optimization results

    表  1  三层波纹结构耐撞性仿真结果

    Table  1.   Simulated crashworthiness of three-layer sandwich structures

    试验号γ1γ2γ3Fp/kNEs/(kJ·kg−1
    10.50.50.53.880.65
    20.51.01.01.990.38
    30.51.51.52.010.32
    40.52.02.03.060.29
    51.00.52.01.900.29
    61.01.01.51.560.35
    71.01.51.01.530.31
    81.02.00.51.720.28
    91.50.51.03.100.39
    101.51.00.53.460.40
    111.51.52.01.650.24
    121.52.01.51.640.26
    132.00.51.53.250.28
    142.01.02.03.580.28
    152.01.50.53.730.34
    162.02.01.03.580.28
    下载: 导出CSV

    表  2  极差分析结果

    Table  2.   Results of range analysis

    参数Fp/kNEs/(kJ·kg−1
    γ1γ2γ3γ1γ2γ3
    ${\bar y_{j1}}$2.7323.0313.1960.4100.4000.415
    ${\bar y_{j2}}$1.6782.6452.5480.3050.3500.341
    ${\bar y_{j3}}$2.4622.2332.1160.3210.3020.300
    ${\bar y_{j4}}$3.5362.4992.5480.2930.2770.273
    Rj1.8580.7981.0800.1170.1230.142
    下载: 导出CSV

    表  3  方差分析结果

    Table  3.   Results of variance analysis

    因素FpEs
    Pj显著性水平αPj显著性水平α
    γ18.29 0.052.570.25
    γ21.57>0.252.690.25
    γ32.80 0.253.5 0.1
    下载: 导出CSV

    表  4  模型误差分析

    Table  4.   Error analysis of the model

    波纹结构FpEs
    εe/%ζ/kNεe /%ζ/(kJ·kg−1
    单层 7.871.944.680.0372
    双层10.270.670.710.0041
    三层 8.070.253.670.0172
    下载: 导出CSV

    表  5  优化结果与验证

    Table  5.   Optimization results and validation

    结构γ1γ2γ3Fp /kNEs /(kJ·kg−1
    预测值实际值误差 /%预测值实际值误差 /%
    单层0.818.9719.67−3.560.780.86−9.30
    双层0.51.2 4.42 4.91−9.980.540.56−3.57
    三层0.60.60.9 2.73 3.03−9.900.500.46 8.70
    下载: 导出CSV
  • [1] 周晓松, 梅志远, 张焱冰. 复合材料夹层结构在舰艇碰撞防护中的研究进展 [J]. 爆炸与冲击, 2018, 38(3): 696–706. DOI: 10.11883/bzycj-2016-0303.

    ZHOU X S, MEI Z Y, ZHANG Y B. Research progress of composite sandwich structure in ship collision protection [J]. Explosion and Shock Waves, 2018, 38(3): 696–706. DOI: 10.11883/bzycj-2016-0303.
    [2] 张振华, 钱海峰, 王媛欣, 等. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验 [J]. 爆炸与冲击, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.

    ZHANG Z H, QIAN H F, WANG Y X, et al. Experiment of dynamic response of multilayered pyramidal lattices during ball hammer collision loading [J]. Explosion and Shock Waves, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.
    [3] 邓泽华, 郭锐, 周昊, 等. 梯度波纹夹层防护结构超高速碰撞特性仿真研究 [J]. 航天器环境工程, 2018, 35(1): 7–13. DOI: 10.3969/j.issn.1673-1379.2018.01.002.

    DENG Z H, GUO R, ZHOU H, et al. Simulation of hypervelocity impact characteristics of gradient corrugated-core sandwich plates [J]. Spacecraft Environment Engineering, 2018, 35(1): 7–13. DOI: 10.3969/j.issn.1673-1379.2018.01.002.
    [4] 潘晋, 黄义飞, 徐荣康, 等. 波纹夹层结构耐撞性影响因素分析 [J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(2): 192–197. DOI: 10.3963/j.issn.2095-3844.2019.02.003.

    PAN J, HUANG Y F, XU R K, et al. Analysis of influencing factors on crashworthiness of corrugated sandwich structures [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(2): 192–197. DOI: 10.3963/j.issn.2095-3844.2019.02.003.
    [5] 骆伟, 谢伟, 刘敬喜. 芯层几何构形对复合材料波纹夹层结构冲击特性的影响 [J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 21–26. DOI: 10.3969/j.issn.1673-4807.2018.01.004.

    LUO W, XIE W, LIU J X. Research on dynamic characteristics of a sandwich structures with various core shapes under impact loads [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(1): 21–26. DOI: 10.3969/j.issn.1673-4807.2018.01.004.
    [6] HE W T, LIU J X, TAO B, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures [J]. Composite Structures, 2016, 158: 30–43. DOI: 10.1016/j.compstruct.2016.09.009.
    [7] LIU J X, HE W T, XIE D, et al. The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures [J]. Composites Part B: Engineering, 2017, 111: 315–331. DOI: 10.1016/J.COMPOSITESB.2016.11.060.
    [8] HE W T, LIU J X, WANG S Q, et al. Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores [J]. Composite Structures, 2018, 189: 37–53. DOI: 10.1016/j.compstruct.2018.01.024.
    [9] 杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 043301. DOI: 10.11883/bzycj-2019-0280.

    YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure [J]. Explosion and Shock Waves, 2020, 40(4): 043301. DOI: 10.11883/bzycj-2019-0280.
    [10] 秦诗牧, 秦俊奇, 杨玉良, 等. 枪虾夹螯的结构特性、运动特性与射流聚焦机理研究 [J]. 振动与冲击, 2019, 38(21): 202–209. DOI: 10.13465/j.cnki.jvs.2019.21.028.

    QIN S M, QIN J Q, YANG Y L, et al. Structure and motion characteristics as well as jet focusing mechanism of snapping shrimp claw [J]. Journal of Vibration and Shock, 2019, 38(21): 202–209. DOI: 10.13465/j.cnki.jvs.2019.21.028.
    [11] 郭婷, 王跃方. 仿甲壳虫芯柱的缓冲吸能结构 [J]. 工程力学, 2011, 28(2): 246–251, 256.

    GUO T, WANG Y F. Energy absorbing structures imitating trabecular of beetle cuticles [J]. Engineering Mechanics, 2011, 28(2): 246–251, 256.
    [12] ZHANG X M, XIE J, CHEN J X, et al. The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material [J]. Scientific Reports, 2017, 7(1): 4440. DOI: 10.1038/s41598-017-03767-w.
    [13] YANG X F, MA J X, SHI Y L, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load [J]. Materials & Design, 2017, 135: 275–290. DOI: 10.1016/j.matdes.2017.09.040.
    [14] PATEK S N, KORFF W L, CALDWELL R L. Biomechanics: deadly strike mechanism of a mantis shrimp [J]. Nature, 2004, 428(6985): 819–820. DOI: 10.1038/428819a.
    [15] PATEK S N, CALDWELL R L. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus [J]. Journal of Experimental Biology, 2005, 208(19): 3655–3664. DOI: 10.1242/jeb.01831.
    [16] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275–1280. DOI: 10.1126/science.1218764.
    [17] CLAVERIE T, CHAN E, PATEK S N. Modularity and scaling in fast movements: power amplification in mantis shrimp [J]. Evolution: International Journal of Organic Evolution, 2011, 65(2): 443–461. DOI: 10.1111/j.1558-5646.2010.01133.x.
    [18] QIU N, GAO Y K, FANG J G, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases [J]. Finite Elements in Analysis and Design, 2015, 104: 89–101. DOI: 10.1016/j.finel.2015.06.004.
    [19] HUANG H, XU S C. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads [J]. Thin-Walled Structures, 2019, 144: 106333. DOI: 10.1016/J.TWS.2019.106333.
    [20] BARAKAT S, BANI-HANI K, TAHA M Q, et al. Multi-objective reliability-based optimization of prestressed concrete beams [J]. Structural Safety, 2004, 26(3): 311–342. DOI: 10.1016/j.strusafe.2003.09.001.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  448
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 修回日期:  2020-10-12
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回