Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

改进的Whipple防护结构与相关数值模拟方法研究进展

陈莹 陈小伟

刘志刚, 曹安业, 朱广安, 王常彬, 井广成. 不耦合爆破技术在高应力区域卸压效果[J]. 爆炸与冲击, 2018, 38(2): 390-396. doi: 10.11883/bzycj-2016-0180
引用本文: 陈莹, 陈小伟. 改进的Whipple防护结构与相关数值模拟方法研究进展[J]. 爆炸与冲击, 2021, 41(2): 021403. doi: 10.11883/bzycj-2020-0289
LIU Zhigang, CAO Anye, ZHU Guang'an, WANG Changbin, JING Guangcheng. Stress relieving effect of non-coupling blasting technique on high stress area[J]. Explosion And Shock Waves, 2018, 38(2): 390-396. doi: 10.11883/bzycj-2016-0180
Citation: CHEN Ying, CHEN Xiaowei. A review on the improved Whipple shield and related numerical simulations[J]. Explosion And Shock Waves, 2021, 41(2): 021403. doi: 10.11883/bzycj-2020-0289

改进的Whipple防护结构与相关数值模拟方法研究进展

doi: 10.11883/bzycj-2020-0289
基金项目: 国家自然科学基金(11627901,11872118)
详细信息
    作者简介:

    陈 莹(1996- ),女,博士研究生,604544512@qq.com

    通讯作者:

    陈小伟(1967- ),男,博士,教授,chenxiaoweintu@bit.edu.cn

  • 中图分类号: O385

A review on the improved Whipple shield and related numerical simulations

  • 摘要: 基于弹丸在超高速撞击薄板时破碎形成碎片云的机理,Whipple防护结构能够对航天器所面临的空间碎片及微流星体等威胁形成有效防护。通过回顾Whipple防护结构的研究和发展历程,对多层板结构、填充式防护结构、夹芯板结构等进行对比,分析其力学效应和防护性能;总结可应用于含泡沫、蜂窝、梯度和编织等材料的防护结构超高速撞击的数值模拟方法及其改进方法;结合相关材料的超高速撞击试验及数值模拟结果,为防护结构未来的研究方向提出建议。
  • 冲击地压是一种需要采取有效措施进行治理的岩石破坏动力现象。近年来随着煤矿开采深度的增加,冲击地压的发生强度和频度都在增加[1]。各国研究人员针对冲击地压灾害治理开展了大量研究工作,提出了众多防治技术[2-3],其中爆破卸压技术就是一种较为有效的冲击地压防治技术。煤层爆破卸压可改变煤体性质,使其储能性降低,起到了冲击地压防治作用,达到降低冲击地压发生概率的目的。

    影响爆破效果的因素较多,其中装药结构对爆破能量传递、破岩效果等均具有较大影响。杨仁树等[4]利用爆炸加载数字激光动态焦散线试验系统,对不同装药结构爆破爆生裂纹动态断裂效应进行了分析。徐颖等[5]通过对爆炸产生应力波破岩特征的分析,给出了更为精确的应力波作用下裂隙区半径计算公式。魏明尧等[6]利用数值模拟方法,分析了卸压爆破前后围岩应力分布和转移规律,并结合电磁辐射监测技术,对采掘现场卸压效果进行了检验。高峰等[7]通过设计不同实验方案,研究了诱导卸荷作用下岩石的力学性能弱化规律。Luo[8]通过实验室和野外爆破实验,对聚能爆破中爆破孔间距、爆破裂纹扩展等参数进行了研究。郭建卿[9]对液固耦合和不耦合爆破对孔壁的不同作用荷载进行了实验研究。

    上述研究主要是针对爆破对岩石的破坏规律等开展研究,但现场冲击地压灾害具有多样性特点[10-13],针对性的防治技术更具有现实意义。为指导现场冲击地压防治工作,本文中针对不耦合装药爆破特点设计室内实验,通过应力、声发射(acoustic emission, AE)等信息分析爆破对承压试件的卸压效果;对出现应力集中的掘进巷道采取深孔不耦合装药爆破进行卸压;并运用电磁辐射、煤体应力、数值模拟等方法对爆破效果进行验证。

    为验证不耦合爆破对承压试样的卸压效果,选用水作为充填介质进行室内承压试件爆破实验。

    1.1.1   炸药选择及试样制备

    实验炸药选用常用RDX炸药,该炸药的TNT当量因数约为1.5,根据相关研究[14-15]和考虑安全因素,药量选择为0.3 g。

    根据相似性原理,采用混凝土试件作为此次实验的受压材料,选用细度为100~200目的石英砂作为骨料,以熟石膏与425R水泥混合物作为胶结剂来制作试件。石英砂、水泥、石膏的质量比为10:1:1.25,水胶质量比为0.6:1。该配比试件的单轴抗压强度为2.04 MPa,容重为19.02 kN/m3,泊松比为0.2,弹性模量为1.73 GPa。试件尺寸为100 mm×100 mm×100 mm。同一方法共制作3块试件:W1、W2、W3。

    1.1.2   不耦合装药爆破卸压实验程序

    (1) 根据试件尺寸制备试件,并在试件成型后立即用不透水的薄膜覆盖表面,在温度为(20±5) ℃的环境中静置1 d,然后拆模,拆模后应立即放入温度为(20±2) ℃、相对湿度为95%以上的养护室中养护28 d,之后在试件中部预留孔内按照图 1所示结构进行装药,径向不耦合系数K=2,选用水作为充填介质。

    图  1  装药示意图
    Figure  1.  Schematic diagram of charge in experiment

    (2) 设备安装调试:将试件置于三轴实验装置内,如图 2所示,然后将装置安装于SANS试验机承压板上,调整有球形座的承压板,使试样均匀受载,加载速率设定为0.8 mm/min,围压设定为1.5 MPa。安装PCI-2声发射系统[16],记录实验过程的声发射信息。

    图  2  三轴试验装置实物照片
    Figure  2.  Photo of triaxial experiment apparatus

    (3) 试验机加载应力值接近但不超过试件抗压强度。

    (4) 引爆内置爆破装置,进行爆破。

    (5) 记录相关实验信息并描述试样的破坏形态。

    本次实验进行了3组爆破,并对3组实验中轴向应力及声发射(AE)振铃计数、能量进行了归类分析。图 3为三组试样爆破前后“时间-应力-累加计数-能量”曲线。从实验的“应力-时间”曲线来看,在达到试件抗压强度之前进行爆破,爆破后各试件均出现了应力降低现象,最大应力降低37.8%,这说明爆破对于应力集中的试件具有较为明显的卸压作用。但之后应力又出现了进一步上升,说明爆破卸压方法具有一定的时效性,即爆破卸压一段时间后会出现应力恢复现象。从曲线上看,在试验机加载速率不变的情况下,曲线的曲率在应力恢复阶段有一定提升,主要因为爆破后碎胀应力的存在使应力恢复速率有所升高。从声发射累加振铃计数及能量来看,由于爆破钻孔及试件材料的离散性,所以存在一个压密阶段,在该阶段出现了较多AE事件,压密阶段之后AE计数及能量与应力曲线吻合度较高,在试件出现较明显的受压破裂时,应力曲线会出现应力降低现象,此时可以记录到较为集中的声发射信号,振铃计数与能量对应出现较大增长,尤其在爆破时出现了较为明显的声发射振铃累加计数增长和能量集中现象。可以看出,破裂的发生与试件应力降低、声发射事件增多具有明显对应关系。

    图  3  时间-应力-AE累加计数-AE能量曲线
    Figure  3.  Time-stress-AE accumulative count-AE energy curves

    通过实验还可以看出在爆破后试件内部出现了明显的破碎现象,在上部轴向压力及围压限制下,该破碎区域虽然已经形成,但无法排出碎块,进而无法形成有效的卸压区域,因此爆破后又出现了应力恢复现象。在煤层高应力区域采取爆破卸压措施时,应及时进行大直径钻孔将煤体内部破碎体排出,以得到持续时间更长的卸压效果。

    本次工程实践选择在山东某矿井LW5303轨道顺槽,该巷道埋深在982~995 m之间,属于典型深部开采,巷道与LW5302采空区之间仅有5 m区段煤柱,而且LW5302工作面受地面村庄压煤问题遗留有宽度为100 m的采空区煤柱,如图 7所示。受大埋深垂直应力、采空区侧向支承压力及采空区遗留煤柱高应力等影响,在LW5303轨道顺槽掘进至图 4所示区域时,在巷道迎头后方1~20 m区域,通过钻屑法与电磁辐射法[17]发现有煤体应力集中现象,最大煤粉量达到23 kg/m,最高电磁辐射强度达到511 mV,而且现场煤炮等动压显现较为频繁。

    图  4  应力异常区域示意图
    Figure  4.  Schematic diagram of abnormal stress area
    图  5  卸压爆破孔布置图
    Figure  5.  Blasthole layout for relieving stress
    图  6  径向不耦合装药结构示意图
    Figure  6.  Schematic diagram of the radial non-coupling charge structure
    图  7  爆破后电磁辐射强度曲线
    Figure  7.  Electromagnetic emission intensity after blasting

    应力集中现象的出现对巷道安全造成极大影响,为了有效改善此种情况,采取了巷道近场应力集中爆破卸压方法进行处理。

    (1) 爆破器材

    雷管:3段毫秒延迟电雷管。炸药:采用煤矿许用三级乳化炸药,单支炸药规格:直径27 mm,长度300 mm,重量200 g,炸药爆速2 800 m/s,炸药密度1.1 g/cm3。起爆电源:矿用FD150-200T型发爆器。

    (2) 爆破孔参数

    针对裂隙区的分析一直为工程爆破研究的重点,尤其在卸压爆破时,裂隙区大小直接影响卸压效果[18]。按照应力波拉伸作用原理计算裂隙区半径为:

    rp=(bσd/σt)1arc=33.7.23mm (1)

    式中:rc为炸药半径;b=ν/(1-ν),ν为煤体泊松比,ν=0.39;a为应力波衰减指数,a=2-μ/(1-μ),μ为煤体的动态泊松比, 与应变率有关,一般值取为泊松比ν的0.8倍;σt为煤体抗拉强度,σt=0.67 MPa;σd为应力波引起的初始径向应力,表达式为:

    σd=ρ0D218(rcrb)6n=151.59MPa (2)

    式中:D1为爆速;ρ0为炸药密度;rb为爆破孔半径;n为压力增大系数,8 < n < 11,此处取值为9。

    爆破孔之间的距离合理时,既能贯通裂隙,起到最佳的卸压效果,又可以达到操作简便并且不会对巷道围岩结构过度破坏。根据式(1)可得,两爆破孔之间的裂隙区宽度为674.46 mm,考虑到验证地点巷道围岩支护情况,且煤岩中存在本身裂隙及中间预裂钻孔,结合经验分析,爆破孔间距选择为2 m。在巷道垂直于煤帮制造直径为54 mm的爆破孔,高度距底板1.5 m,孔深15 m。

    (3) 施工排粉预裂钻孔

    为了实现持续更久的卸压效果,在2个爆破孔中间采用气动式架柱钻机制造直径为76 mm的排粉导裂钻孔,目的有两个:(a)在2个爆破孔之间引导产生裂隙,增强爆破后的裂隙区范围;(b)爆破后可以及时排出破碎煤体,释放碎胀应力。爆破孔与导裂孔布置如图 5所示。

    (4) 装药

    为了提高爆破孔的利用率,增高应力波的动压和爆轰气体静压作用时间,降低炸药消耗量并改善爆破的安全性。采用径向不耦合反向装药结构,充填介质为水,不耦合因数K=2。现场实测发现LW5303轨道顺槽巷帮侧向高应力区域位置为12~14 m,为了改变该区域受载煤体性质,使应力峰值向深部进行转移,需要将该区域进行装药爆破。装药长度选择为4 m,根据煤矿许用三级乳化炸药参数可知单孔装药量为2.6 kg。按图 6所示装药结构进行装药。

    (5) 起爆

    采用矿用FD150-200T型发爆器对爆破孔内炸药进行引爆。

    在巷道迎头实施1次卸压爆破,巷道左帮(实体煤帮)距迎头1~20 m范围内实施20次卸压爆破。选择电磁辐射法、煤体应力监测法、现场动态观测法进行效果验证。爆破后在该区域左帮(实体煤帮)安装了2个深度为15 m的钻孔应力计(初始压力值3 MPa),其中应力计1距迎头3 m,应力计2距迎头15 m。监测曲线如图 7~8所示。

    图  8  爆破后煤体应力监测曲线
    Figure  8.  Stress after blasting

    从校验情况来看,经过爆破卸压处理的工作面其电磁辐射强度显著下降,最大强度值下降为51 mV,小于预警值120 mV。煤体应力监测结果显示,在爆破后应力有一定恢复趋势,这与煤体重新压实有一定关系,但应力计最大应力值为5 MPa左右,仍小于预警值10 MPa。同时,现场煤体破裂响声、巷道围岩变形速率等均有减少,这表明此次卸压爆破工作起到了一定效果。

    结合LW5303轨道顺槽实际情况,建立卸压爆破数值模型,模拟卸压爆破对煤体应力分布的影响,进一步来检验卸压爆破效果。模型网格划分如图 9所示,在模型中设计了一个爆破孔,设置了距爆破孔为1.0、1.5、2.0 m三个观测点,用来监测动载作用在该点位置的相关信息。爆破孔内动载波形为谐波的一部分,波形中主要包含了应力峰值和作用时间2个参数。按照式(2)可得应力峰值为151.59 MPa,作用时间设定为2 ms。

    图  9  模型示意图
    Figure  9.  Model schematic diagram

    图 10为爆破前后钻孔附近垂直应力分布图,从图中可以看出:爆破前,进行钻孔施工后,钻孔周围产生了较为明显的应力分布影响,钻孔对煤体卸压有一定效果;爆破后,在爆破孔两侧较近区域由于爆破出现了小范围的应力集中现象,这与现场破碎区碎胀应力引起的应力集中相对应,但在钻孔两侧一定区域内出现了较为明显的应力降低区域,最大应力降幅度约为14.3%,卸压效果明显。

    图  10  钻孔附近垂直应力分布图
    Figure  10.  Vertical stress distribution near the drilling

    图 11为距爆破孔1.0、1.5、2.0 m处测点的垂直应力变化曲线,从图中可以看出:距爆破孔1.0 m测点处的垂直应力降低点明显超前于1.5和2.0 m处,而且各处测点均出现了应力波动现象,这与动载的加载形式有关,1.0 m测点处波形尤为明显;在爆破后应力均出现了应力恢复现象,1.0 m测点处应力恢复现象更明显,这也说明了爆破卸压容易产生应力恢复,同时印证了室内实验与现场监测中出现的应力恢复现象,因此爆破还应配合大直径钻孔加强卸压持续效果。

    图  11  测点垂直应力变化曲线
    Figure  11.  Vertical stress-time curves at measuring points

    (1) 通过室内承压试件的爆破实验,发现爆破后承压试件有明显应力降低现象,声发射信息表明爆破时会出现能量与振铃计数的大幅度增加,可以看出破裂的发生与试件应力降低、声发射事件增多具有明显对应关系。同时,由于碎胀应力的存在,爆破后试件的应力恢复速率有所增加。

    (2) 在深部煤矿高应力集中巷道中开展了深孔水介质不耦合爆破现场实验,爆破孔直径54 mm,孔深15 m,装药量2.6 kg,不耦合因数K=2,爆破孔间距为2 m,2个爆破孔之间设计有排粉预裂钻孔来增强卸压效果。现场爆破结束后通过电磁辐射、煤体应力监测、矿压观测与数值模拟等方法进行了卸压效果检验。爆破后电磁辐射强度幅值有显著下降,煤体应力在预警值之内,数值模拟结果显示爆破后一定区域内出现了较为明显的应力降低现象,最大应力降幅度约为14.3%,表明本次爆破对缓解巷道应力集中情况具有积极效果。

  • 图  1  Whipple防护结构[5]

    Figure  1.  Whipple shield[5]

    图  2  碎片云结构(球形弹丸)[6]

    Figure  2.  Debris cloud structure (spherical projectile)[6]

    图  3  Multi-shock (MS)防护结构[10]

    Figure  3.  Multi-shock shield[10]

    图  4  Mesh double-bumper(MDB)防护结构[10]

    Figure  4.  Mesh double-bumper shield[10]

    图  5  填充式防护结构[14]

    Figure  5.  Stuffed Whipple shield[14]

    图  6  填充式泡沫铝防护结构[30]

    Figure  6.  Al-form stuffed Whipple shield[30]

    图  7  填充式泡沫铝防护结构与传统Whipple防护结构的弹道极限曲线[33]

    Figure  7.  Ballistic limit curves of Al-form stuffed Whipple shield and Whipple shield[33]

    图  8  弹丸高速撞击蜂窝铝夹芯板的破碎过程[41]

    Figure  8.  Simulation of hypervelocity impacts on honeycomb sandwich structure[41]

    图  9  不同入射角度蜂窝铝夹芯板防护结构的弹道极限曲线[39]

    Figure  9.  Projectile critical perforation diameter as a function of impact velocity against the same honeycomb panel[39]

    图  10  泡沫铝夹芯板防护结构示意图[32]

    Figure  10.  Schematic configuration of Al-foam sandwiched shield[32]

    图  11  开孔泡沫夹芯板和蜂窝夹芯板损伤对比[50]

    Figure  11.  Comparison of damages in open-cell foam core and honeycomb core sandwiches[50]

    图  12  等质量的不同Whipple防护结构弹道极限曲线对比[48]

    Figure  12.  Comparison of ballistic limit curves for comparable weight/standoff Whipple shield types[48]

    图  13  开孔泡沫孔隙与泡沫孔大小和不同孔隙率的孔隙形状示意图[48]

    Figure  13.  Open cell foam pore and cell size and ligament cross section variation with relative density[48]

    图  14  双层蜂窝结构(DL-H) 和双层泡沫结构(DL-F) [16]

    Figure  14.  Schematic of the double-layer honeycomb target and the double-layer foam target [16]

    图  15  350 μs时SPH和FER方法碎片的比较[95]

    Figure  15.  Comparison of debris cloud results between SPH and FER at 350 μs[95]

    图  16  5种不同冲击速度下球形弹体的损伤对比[111]

    Figure  16.  Damage in aluminum spheres due to impact with aluminum bumpers at five different velocities[111]

    图  17  自适应耦合算法所得碎片云形态[119]

    Figure  17.  The debris cloud of FEM-SPH adaptive method[119]

    图  18  泡沫材料试件与Voronoi泡沫模型对比[135]

    Figure  18.  Comparison of the Al-foam with the Voronoi tessellation model[135]

    图  19  泡沫结构生成算法示意图[138]

    Figure  19.  Schematic illustration of the algorithm for foam structure generation[138]

    图  20  相邻两个孔间胞壁厚度示意图[139]

    Figure  20.  Schematic diagram of the cell-wall thickness between the two adjacent pores[139]

    图  21  闭孔金属泡沫的有限元单元[139]

    Figure  21.  Finite element grid of closed-cell metallic foams[139]

    图  22  有限元模型不同截面和CT扫描得到的灰度图像对比[152]

    Figure  22.  Comparison of different section and gray images of finite element model[152]

  • [1] ANZ-MEADOR P D, OPIELA J N, SHOOTS D, et al. History of on-orbit satellite fragmentations: NASA/TM-2018-220037 [R]. Houston, Texas: Lyndon B. Johnson Space Center, NASA, 2018.
    [2] 龚自正, 徐坤博, 牟永强, 等. 空间碎片环境现状与主动移除技术 [J]. 航天器环境工程, 2014, 31(2): 129–135. DOI: 10.12126/see.2014.02.003.

    GONG Z Z, XU K B, MU Y Q, et al. The space debris environment and the active debris removal techniques [J]. Spacecraft Environment Engineering, 2014, 31(2): 129–135. DOI: 10.12126/see.2014.02.003.
    [3] 郑世贵, 闫军. 空间碎片防护需求与防护材料进展 [J]. 国际太空, 2014(6): 49–53.

    ZHENG S G, YAN J. A review on the space debris protection and protective materials [J]. Space International, 2014(6): 49–53.
    [4] 龚自正, 杨继运, 张文兵, 等. 航天器空间碎片超高速撞击防护的若干问题 [J]. 航天器环境工程, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001.

    GONG Z Z, YANG J Y, ZHANG W B, et al. Spacecraft protection from the hypervelocity impact of space meteoroid and orbital debris [J]. Spacecraft Environment Engineering, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001.
    [5] WHIPPLE F L. Meteorites and space travel [J]. The Astronomical Journal, 1947, 52: 131. DOI: 10.1086/106009.
    [6] PIEKUTOWSKI A J. Formation and description of debris clouds produced by hypervelocity impact [R]. Huntsville, Alabama: Marshall Space Flight Center, NASA, 1996.
    [7] ANDERSON JR C E, TRUCANO T G, MULLIN SA. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI: 10.1016/0734-743X(90)90024-P.
    [8] PIEKUTOWSKI A J. Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminum plates [J]. International Journal of Impact Engineering, 1987, 5(1–4): 509–518. DOI: 10.1016/0734-743X(87)90066-2.
    [9] MORRISON R H. A preliminary investigation of projectile shape effects in hypervelocity impact of a double-sheet structure: TN-D-6944 [R]. Washington: National Aeronautics and Space Administration, 1972.
    [10] MACLAY T D, CULP R D, BAREISS L, et al. Topographically modified bumper concepts for spacecraft shielding [J]. International Journal of Impact Engineering, 1993, 14(1–4): 479–489. DOI: 10.1016/0734-743X(93)90044-8.
    [11] COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10(1–4): 135–146. DOI: 10.1016/0734-743X(90)90054-Y.
    [12] CHRISTIANSEN E L. Performance equations for advanced orbital debris shields [C]// Space Programs and Technologies Conference. Huntsivolle: AIAA, 1992.
    [13] CREWS J L, CHRISTIANSEN E L. The NASA JSC hypervelocity impact test facility (HIT-F) [C]// Space Programs and Technologies Conference. Huntsivolle: AIAA, 1992. DOI: 10.2514/6.1992-1640.
    [14] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1–3): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
    [15] DESTEFANIS R, SCHÄFER F, LAMBERT M, et al. Enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2003, 29(1–10): 215–226. DOI: 10.1016/j.ijimpeng.2003.09.019.
    [16] RYAN S, HEDMAN T, CHRISTIANSEN E L. Honeycomb vs. foam: evaluating potential upgrades to ISS module shielding [J]. Acta Astronautica, 2010, 67: 818–825. DOI: 10.1016/j.actaastro.2010.05.021.
    [17] 周昊, 郭锐, 南博华, 等. 填充式波纹夹层结构超高速撞击特性仿真 [J]. 国防科技大学学报, 2017, 39(2): 57–63. DOI: 10.11887/j.cn.201702008.

    ZHOU H, GUO R, NAN B H, et al. Simulation on hypervelocity impact characteristics of stuffed corrugation-cored sandwiches [J]. Journal of National University of Defense Technology, 2017, 39(2): 57–63. DOI: 10.11887/j.cn.201702008.
    [18] SCHONBERG W P, TULLOS R J. Spacecraft wall design for increased protection against penetration by orbital debris impacts [J]. AIAA Journal, 1991, 29(12): 2207–2214. DOI: 10.2514/6.1990-3663.
    [19] KAWAI N, KURODA Y, NAGANO M, et al. Stress-wave propagation and damage formation associated with hypervelocity penetration into polycarbonate [J]. Procedia Engineering, 2017, 204: 255–261. DOI: 10.1016/j.proeng.2017.09.733.
    [20] KUMAR S K S, JURADO-MANRIQUEZ E A, KIM Y H, et al. Polybenzimidazole (PBI) film coating for improved hypervelocity impact energy absorption for space applications [J]. Composite Structures, 2018, 188: 72–77. DOI: 10.1016/j.compstruct.2017.12.052.
    [21] LI T, YU X, LIU H F, et al. Tensile behavior of C/SiC composites plate after hypervelocity penetration: residual strength and fracture mechanism [J]. Composite Structures, 2018, 189: 378–385. DOI: 10.1016/j.compstruct.2018.01.058.
    [22] WU Q, ZHANG Q M, LONG R R, et al. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum [J]. Applied Physics Letters, 2016, 108: 135–183. DOI: 10.1063/1.4943584.
    [23] COUR-PALAIS B G. Meteorid environment model: NASA/SP-8013 [R]. Washington: National Aeronautics and Space Administration, 1969. DOI: CDSTIC.GRA.00159492.
    [24] CHRISTIANSEN E L. Meteoroid/debris shielding: NASA/TP-2003-210788 [R]. Houston, Texas: NASA Johnson Space Center, 2003.
    [25] HAYASHIDA K B, ROBINSON J H. Double-plate penetration equations: NASA/TM-2000-209907 [R]. Alabama: Marshall Space Flight Center, NASA, 2000.
    [26] 郑建东, 龚自正, 童靖宇, 等. 一种新的Whipple防护结构弹道极限方程准确率分析 [J]. 航天器环境工程, 2012, 29(2): 134–138. DOI: 10.3969/j.issn.1673-1379.2012.02.004.

    ZHENG J D, GONG Z Z, TONG J Y, et al. Accuracy analysis of a new Whipple shield ballistic limit equations [J]. Spacecraft Environment Engineering, 2012, 29(2): 134–138. DOI: 10.3969/j.issn.1673-1379.2012.02.004.
    [27] CHRISTIANSEN E L, KERR J H. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection [J]. International Journal of Impact Engineering, 1993, 14(1 –4): 169–180. DOI: 10.1016/0734-743X(93)90018-3.
    [28] CHRISTIANSEN E L. Advanced meteoroid and debris shielding concepts [C]// Orbital Debris Conference: Technical Issues and Future Directions, AIAA. 1990. DOI: 10.2514/6.1990-1336.
    [29] CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23: 125–136. DOI: 10.1016/S0734-743X(99)00068-8.
    [30] RYAN S, CHRISTIANSEN E L. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding [J]. Acta Astronautica, 2013, 83: 216–231. DOI: 10.1016/j.actaastro.2012.09.012.
    [31] 贾斌, 马志涛, 庞宝君. 填充泡沫铝防护结构的超高速撞击数值模拟 [J]. 哈尔滨工业大学学报, 2011, 43(1): 16–20. DOI: 10.11918/j.issn.0367-6234.2011.01.004.

    JIA B, MA Z T, PANG B J. Numerical simulation investigation in hypervelocity impact on Al-foam stuffed shields [J]. Journal of Harbin Institute of Technology, 2011, 43(1): 16–20. DOI: 10.11918/j.issn.0367-6234.2011.01.004.
    [32] 贾斌, 马志涛, 庞宝君. 含泡沫铝防护结构的超高速撞击数值模拟研究 [J]. 高压物理学报, 2009, 23(6): 453–459. DOI: 10.11858/gywlxb.2009.06.009.

    JIA B, MA Z T, PANG B J. Numerical simulation investigation in hypervelocity impact on shield structure containing aluminum foam [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 453–459. DOI: 10.11858/gywlxb.2009.06.009.
    [33] 刘文祥, 张德志, 张向荣, 等. 填充式泡沫铝防护结构的弹道极限 [J]. 爆炸与冲击, 2012, 32(1): 43–46. DOI: 10.11883/1001-1455(2012)01-0043-04.

    LIU W X, ZHANG D Z, ZHANG X R, et al. Ballistic limit of an aluminum foam-filledshield [J]. Explosion and Shock Waves, 2012, 32(1): 43–46. DOI: 10.11883/1001-1455(2012)01-0043-04.
    [34] DESTEFANIS R, SCHÄFER F, LAMBERT M, et al. Selecting enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2006, 33(1–12): 219–230. DOI: 10.1016/j.ijimpeng.2006.09.065.
    [35] TAYLOR E A, GLANVILLE J P, CLEGG R A, et al. Hypervelocity impact on spacecraft honeycomb: hydrocode simulation and damage laws [J]. International Journal of Impact Engineering, 2003, 29: 691–702. DOI: 10.1016/j.ijimpeng.2003.10.016.
    [36] TAYLOR E A. Computational study of hypervelocity impact onto Whipple bumpers and sandwich plates with honeycomb core [R]. European Space Agency/European Space Research and Technology Centre, 1999.
    [37] RYAN S, SCHÄFER F, DESTEFANIS R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures [J]. Advances in Space Research, 2008, 41(7): 1152–1166. DOI: 10.1016/j.asr.2007.02.032.
    [38] SIBEAUD J-M, PRIEUR C, PUILLET C. Hypervelocity impact on honeycomb target structures: experimental part [C]// The 4th European Conference on Space Debris. Darmstadt, Germany: The European Space Agency, 2005.
    [39] SIBEAUD J-M, THAMIE L, PUILLET C. Hypervelocity impact on honeycomb target structures: experiments and modeling [J]. International Journal of Impact Engineering, 2008, 35(12): 1799–1807. DOI: 10.1016/j.ijimpeng.2008.07.037.
    [40] JEX D W, MAC KAY C, MILLER A. The characteristics of penetration for a double-sheet structure with honeycomb: NASA/TM-X-53974 [R]. Huntsville: Marshall Space Flight Center, NASA, 1970.
    [41] DECONINCK P, ABDULHAMID H, HÉREIL P L, et al. Experimental and numerical study of submillimeter-sized hypervelocity impacts on honeycomb sandwich structures [J]. Procedia engineering, 2017, 204: 452–459. DOI: 10.1016/j.proeng.2017.09.740.
    [42] NITTA K, HIGASHIDE M, KITAZAWA Y, et al. Response of a aluminum honeycomb subjected to hypervelocity impacts [J]. Procedia Engineering, 2013, 58: 709–714. DOI: 10.1016/j.proeng.2013.05.082.
    [43] SCHONBERG W, SCHÄFER F, PUTZAR R. Hypervelocity impact response of honeycomb sandwich panels [J]. Acta Astronautica, 2010, 66(3–4): 455–466. DOI: 10.1016/j.actaastro.2009.06.018.
    [44] ANON. Effectiveness of aluminum honeycomb shields in preventing meteoroid damage to liquid-filled spacecraft tanks: NASA/CR-65261 [R]. Salt Lake City: Utah Research and Development Co. Inc., NASA, 1964.
    [45] LATHROP B L, SENNETT R E. Effects of hypervelocity impact on honeycomb structures [J]. Journal of Spacecraft and Rockets, 1968, 5(12): 1496–1497. DOI: 10.2514/3.29514.
    [46] LAMBERT M, SCHÄFER F K, GEYER T. Impact damage on sandwich panels and multi-layer insulation [J]. International Journal of Impact Engineering, 2001, 26(1–10): 369–380. DOI: 10.1016/S0734-743X(01)00108-7.
    [47] KANG P, YOUN S K, LIM J H. Modification of the critical projectile diameter of honeycomb sandwich panel considering the channeling effect in hypervelocity impact [J]. Aerospace Science and Technology, 2013, 29: 413–425. DOI: 10.1016/j.ast.2013.04.011.
    [48] RYAN S, ORDONEZ E, CHRISTIANSEN E L, et al. Hypervelocity impact performance of open cell foam core sandwich panel structures [C]// The 11th Hypervelocity Impact Symposium. Freiburg, Germany, 2010.
    [49] YASENSKY J, CHRISTIANSEN E L. Hypervelocity impact evaluation of metal foam core sandwich structures: NASA/JSC63945 [R]. NASA, 2007.
    [50] RYAN S, HEDMAN T, CHRISTIANSEN E L. Honeycomb vs. foam: evaluating a potential upgrade to international space station module shielding for micrometeoroids and orbital debris: NASA/TM-2009-214793 [R]. Arizona: USRA Lunar and Planetary Institute, NASA, 2009.
    [51] VOILLAT R, GALLIEN F, MORTENSEN A, et al. Hypervelocity impact testing on stochastic and structured open porosity cast Al-Si cellular structures for space applications [J]. International Journal of Impact Engineering, 2018, 120: 126–137. DOI: 10.1016/j.ijimpeng.2018.05.002.
    [52] GAITANAROS S, KYRIAKIDES S. On the effect of relative density on the crushing and energy absorption of open-cell foams under impact [J]. International Journal of Impact Engineering, 2015, 82: 3–13. DOI: 10.1016/j.ijimpeng.2015.03.011.
    [53] SHI X P, LIU S Y, NIE H L, et al. Study of cell irregularity effects on the compression of closed-cell foams [J]. International Journal of Mechanical Sciences, 2018, 135: 215–225. DOI: 10.1016/j.ijmecsci.2017.11.026.
    [54] SANCHEZ G A, CHRISTIANSEN E L. FGB energy block meteoroid and orbital (M/OD) debris shield test report: NASA/JSC-27460 [R]. Washington: National Aeronautics and Space Administration, 1996.
    [55] THOMA K, SCHÄFER F, HIERMAIER S, et al. An approach to achieve progress in spacecraft shielding [J]. Advances in Space research, 2004, 34(5): 1063–1075. DOI: 10.1016/j.asr.2003.03.034.
    [56] 张雄, 刘岩, 马上. 无网格法的理论及应用 [J]. 力学进展, 2009, 39(1): 1–36. DOI: 10.3321/j.issn:1000-0992.2009.01.001.

    ZHANG X, LIU Y, MA S. Meshfree methods and their applications [J]. Advances in Mechanics, 2009, 39(1): 1–36. DOI: 10.3321/j.issn:1000-0992.2009.01.001.
    [57] 张雄, 宋康祖, 陆明万. 无网格法研究进展及其应用 [J]. 计算力学学报, 2003, 20(6): 730–742. DOI: 10.7511/jslx20036138.

    ZHANG X, SONG K Z, LU M W. Research progress and application of meshless method [J]. Chinese Journal of Computational Mechanics, 2003, 20(6): 730–742. DOI: 10.7511/jslx20036138.
    [58] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamicsmethod and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
    [59] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389. DOI: 10.1093/mnras/181.3.375.
    [60] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82(12): 1013–1024. DOI: 10.1086/112164.
    [61] LIBERSKY L D, PETSCHEK A G. Smooth particle hydrodynamics with strength of materials [J]. Advances in the Free Lagrange Method, 1990, 248: 248–257. DOI: 10.1007/3-540-54960-9_58.
    [62] LIBERSKY L D, RANDLES P W, CARNEY T C, et al. Recent improvements in SPH modeling of hypervelocity impact [J]. International Journal of Impact Engineering, 1997, 20(6–10): 525–532. DOI: 10.1016/S0734-743X(97)87441-6.
    [63] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993, 109(1): 67–75. DOI: 10.1006/jcph.1993.1199.
    [64] RANDLES P W, LIBERSKY L D. Smoothed particle hydrodynamics: some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 375–408. DOI: 10.1016/S0045-7825(96)01090-0.
    [65] HAYHURST C J, CLEGG R A. Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates [J]. International Journal of Impact Engineering, 1997, 20(1–5): 337–348. DOI: 10.1016/S0734-743X(97)87505-7.
    [66] 崔伟峰, 曾新吾. SPH算法在超高速碰撞数值模拟中的应用 [J]. 国防科技大学学报, 2007, 29(2): 43–46. DOI: 10.3969/j.issn.1001-2486.2007.02.010.

    CUI W F, ZENG X W. Smoothed particle hydrodynamics algorithm applied in numerical simulation of hypervelocity impact [J]. Journal of National University of Defense Technology, 2007, 29(2): 43–46. DOI: 10.3969/j.issn.1001-2486.2007.02.010.
    [67] 徐志宏, 汤文辉, 罗永. SPH 算法在高速侵彻问题中的应用 [J]. 国防科技大学学报, 2005, 27(4): 41–44. DOI: 10.3969/j.issn.1001-2486.2005.04.010.

    XU Z H, TANG W H, LUO Y. Smoothed particle hydrodynamics algorithm applied in penetration problem [J]. Journal of National University of Defense Technology, 2005, 27(4): 41–44. DOI: 10.3969/j.issn.1001-2486.2005.04.010.
    [68] LIU G R, LIU M B, LI S F. Smoothed particle hydrodynamics: a meshfree method [J]. Computational Mechanics, 2004, 33: 491–491. DOI: 10.1007/s00466-004-0573-1.
    [69] DYKA C T, INGEL R P, FLIPPEN L D. A new approach to dynamic condensation for FEM [J]. Computers & Structures, 1995, 61(4): 763–773. DOI: 10.1016/0045-7949(96)00017-X.
    [70] SWEGLE J W, HICKS D L, ATTAWAY S W. Smoothed particle hydrodynamics stability analysis [J]. Journal of Computational Physics, 1995, 116(1): 123–134. DOI: 10.1006/jcph.1995.1010.
    [71] 傅学金, 强洪夫, 杨月诚. 固体介质中SPH方法的拉伸不稳定性问题研究进展 [J]. 力学进展, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.

    FU X J, QIANG H F, YANG Y C. Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics [J]. Advances in Mechanics, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.
    [72] MORRIS J P. A study of the stability properties of smooth particle hydrodynamics [J]. Publications of the Astronomical Society of Australia, 1996, 13(1): 97–102. DOI: 10.1017/S1323358000020610.
    [73] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析 [J]. 物理学报, 2010, 59(6): 3654–3662. DOI: 10.7498/aps.59.3654.

    LIU M B, CHANG J Z. Particle distribution and numerical stability in smoothed particle hydrodynamics method [J]. Acta Physica Sinica, 2010, 59(6): 3654–3662. DOI: 10.7498/aps.59.3654.
    [74] 卞梁, 王肖钧, 章杰, 等. 高速碰撞数值计算中的 SPH 分区算法 [J]. 计算物理, 2011, 28(2): 207–212. DOI: 10.3969/j.issn.1001-246X.2011.02.007.

    BIAN L, WANG X J, ZHANG J, et al. Numerical simulation of hypervelocity impact with subdomains in SPH computation [J]. Chinese Journal of Computational Physics, 2011, 28(2): 207–212. DOI: 10.3969/j.issn.1001-246X.2011.02.007.
    [75] 倪国喜, 王瑞利, 林忠, 等. 任意区域上的粒子均匀分布方法 [J]. 计算力学学报, 2007, 24(4): 408–413. DOI: 10.3969/j.issn.1007-4708.2007.04.005.

    NI G X, WANG R L, LIN Z, et al. Equi-distribution of particles in arbitrary domain [J]. Chinese Journal of Computational Mechanics, 2007, 24(4): 408–413. DOI: 10.3969/j.issn.1007-4708.2007.04.005.
    [76] 董晃晃. SPH 的粒子生成方法及其在弹体侵彻金属靶中的应用[D]. 南昌: 华东交通大学, 2017.

    DONG H H. Particle generation method for SPH and the application of SPH to penetration of metal targets by projectiles [D]. Nanchang: East China Jiaotong University, 2017.
    [77] DYKA C T, RANDLES P W, INGEL R P. Stress point for tension instability in SPH [J]. International Journal for Numerical Methods in Engineering, 1997, 40(13): 2325–2341. DOI: 10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO,2.
    [78] MONAGHAN J J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290–311. DOI: 10.1006/jcph.2000.6439.
    [79] LIU M B, LIU G R, ZONG Z. An overview on smoothed particle hydrodynamics [J]. International Journal of Computational Methods, 2008, 5(1): 135–188. DOI: 10.1142/S021987620800142X.
    [80] LIU M B, XIE W P, LIU G R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modelling, 2005, 29(12): 1252–1270. DOI: 10.1016/j.apm.2005.05.003.
    [81] LIU M B, LIU G R. Restoring particle consistency in smoothed particle hydrodynamics [J]. Applied Numerical Mathematics, 2006, 56(1): 19–36. DOI: 10.1016/j.apnum.2005.02.012.
    [82] 杨秀峰, 刘谋斌. 光滑粒子动力学 SPH 方法应力不稳定性的一种改进方案 [J]. 物理学报, 2012, 61(22): 224701. DOI: 10.7498/aps.61.224701.

    YANG X F, LIU M B. Improvement on stress instability in smoothed particle hydrodynamics [J]. Acta Physica Sinica, 2012, 61(22): 224701. DOI: 10.7498/aps.61.224701.
    [83] GRADY D E, WINFREE N A. Impact fragmentation of high-velocity compact projectiles on thin plates: a physical and statistical characterization of fragment debris [J]. International Journal of Impact Engineering, 2001, 26(1 –10): 249–262. DOI: 10.1016/S0734-743X(01)00085-9.
    [84] NAKAMURA A, FUJIWARA A. Velocity distribution of fragments formed in a simulated collisional disruption [J]. Icarus, 1991, 92(1): 132–146. DOI: 10.1016/0019-1035(91)90040-Z.
    [85] HOCKNEY R W, EASTWOOD J W. Computer simulation using particles [M]. New York: McGraw-Hill, 1981.
    [86] HOCKNEY R W, EASTWOOD J W. Computer simulation using particles [M]. Boca Raton: CRC Press, 1988.
    [87] BENZ W. Smooth particle hydrodynamics: a review [C] // The Numerical Modelling of Nonlinear Stellar Pulsations. Dordrecht: NATO ASI Series, 1990: 269–288. DOI: 10.1007/978-94-009-0519-1_16.
    [88] BENZ W, ASPHAUG E. Impact simulations with fracture: I: method and tests [J]. Icarus, 1994, 107(1): 98–116. DOI: 10.1006/icar.1994.1009.
    [89] BENZ W, ASPHAUG E. Simulations of brittle solids using smooth particle hydrodynamics [J]. Computer Physics Communications, 1995, 87(1–2): 253–265. DOI: 10.1016/0010-4655(94)00176-3.
    [90] 徐金中, 汤文辉, 徐志宏. 超高速碰撞碎片云特征的SPH方法数值分析 [J]. 高压物理学报, 2008, 22(4): 377–383. DOI: 10.11858/gywlxb.2008.04.007.

    XU J Z, TANG W H, XU Z H. Numerical analysis of the characteristics of debris clouds produced by hypervelocity impacts using SPH method [J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 377–383. DOI: 10.11858/gywlxb.2008.04.007.
    [91] LIANG S C, LI Y, CHEN H, et al. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set [J]. International Journal of Impact Engineering, 2013, 56: 27–31. DOI: 10.1016/j.ijimpeng.2012.07.004.
    [92] SAKONG J, WOO S C, KIM T W. Determination of impact fragments from particle analysis via smoothed particle hydrodynamics and k-means clustering [J]. International Journal of Impact Engineering, 2019, 134: 103387. DOI: 10.1016/j.ijimpeng.2019.103387.
    [93] ZHANG X T, JIA G H, HUANG H. Fragment identification and statistics method of hypervelocity impact SPH simulation [J]. Chinese Journal of Aeronautics, 2011, 24: 18–24. DOI: 10.1016/S1000-9361(11)60003-4.
    [94] 张晓天, 贾光辉, 黄海. 基于 FE 重构方法的冲击破碎仿真 [J]. 计算力学学报, 2011, 28(5): 792–797. DOI: 10.7511/jslx201105024.

    ZHANG X T, JIA G H, HUANG H. Combination of FE and SPH method for impact fragmentation [J]. Chinese Journal of Computational Mechanics, 2011, 28(5): 792–797. DOI: 10.7511/jslx201105024.
    [95] ZHANG X T, JIA G H, HUANG H. Finite element reconstruction approach for on-orbit spacecraft breakup dynamics simulation and fragment analysis [J]. Advances in Space Research, 2013, 51(3): 423–433. DOI: 10.1016/j.asr.2012.09.023.
    [96] 张晓天, 贾光辉, 黄海. 基于超高速碰撞仿真的卫星碰撞解体碎片分析 [J]. 航空学报, 2011, 32(7): 1224–1230. DOI: CNKI:11-1929/V.20110330.1305.004.

    ZHANG X T, JIA G H, HUANG H. Debris analysis of on-orbit satellite collision based on hypervelocity impact simulation [J]. Acta Aeronautica Astronautica Sinica, 2011, 32(7): 1224–1230. DOI: CNKI:11-1929/V.20110330.1305.004.
    [97] ATTAAWAY S W, HEINSTEIN M W, SWEGLE J W. Coupling of smooth particle hydrodynamics with the finite element method [J]. Nuclear Engineering and Design, 1994, 150(2–3): 199–205. DOI: 10.1016/0029-5493(94)90136-8.
    [98] VUYST TD, VIGNJEVIC R, CAMPBELL J C. Coupling between meshless and finite element methods [J]. International Journal of Impact Engineering, 2005, 31(8): 1054–1064. DOI: 10.1016/j.ijimpeng.2004.04.017.
    [99] JOHNSON G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations [J]. Nuclear Engineering and Design, 1994, 150(2–3): 265–274. DOI: 10.1016/0029-5493(94)90143-0.
    [100] 冷冰林, 许金余, 邵宁, 等. 刚性弹丸侵彻金属靶体的 FEM-SPH 耦合计算 [J]. 弹箭与制导学报, 2008, 28(5): 105–108. DOI: 10.3969/j.issn.1673-9728.2008.05.032.

    LENG B L, XU J Y, SHAO N, et al. Computation of steel penetrated by rigid projectile with coupled FEM-SPH methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(5): 105–108. DOI: 10.3969/j.issn.1673-9728.2008.05.032.
    [101] 肖毅华, 胡德安, 韩旭, 等. 一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用 [J]. 爆炸与冲击, 2012, 32(4): 51–59. DOI: 10.11883/1001-1455(2012)04-0384-09.

    XIAO Y H, HU D A, HAN X, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation [J]. Explosion and Shock Waves, 2012, 32(4): 51–59. DOI: 10.11883/1001-1455(2012)04-0384-09.
    [102] 纪冲, 龙源, 方向. 基于FEM-SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟 [J]. 振动与冲击, 2010, 29(7): 69–74. DOI: 10.3969/j.issn.1000-3835.2010.07.015.

    JI C, LONG Y, FANG X. Numerical simulation for projectile penetrating steel fiber reinforced concrete with FEM-SPH coupling algorithm [J]. Journal of Vibration and Shock, 2010, 29(7): 69–74. DOI: 10.3969/j.issn.1000-3835.2010.07.015.
    [103] 武玉玉, 何远航, 李金柱. 耦合方法在超高速碰撞数值模拟中的应用 [J]. 高压物理学报, 2005, 19(4): 385–389. DOI: 10.11858/gywlxb.2005.04.019.

    WU Y Y, HE Y H, LI J Z. Application of the coupling method in simulating the hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 385–389. DOI: 10.11858/gywlxb.2005.04.019.
    [104] 何远航, 武玉玉, 张庆明. 碰撞倾角对碎片云分布影响的数值模拟 [J]. 北京理工大学学报, 2007, 27(10): 851–854. DOI: 10.3969/j.issn.1001-0645.2007.10.002.

    HE Y H, WU Y Y, ZHANG Q M. Numerical simulation for the influence of impact angle on debris clouds distribution [J]. Transactions of Beijing Institute of Technology, 2007, 27(10): 851–854. DOI: 10.3969/j.issn.1001-0645.2007.10.002.
    [105] SAKONG J, WOO S C, KIM J Y, et al. Study on material fracture and debris dispersion behavior via high velocity impact [J]. Transactions of the Korean Society of Mechanical Engineers A, 2017, 41(11): 1065–1075. DOI: 10.3795/KSME-A.2017.41.11.1065.
    [106] BECKER M, SEIDL M, MEHL M, et al. Numerical and experimental investigation of SPH, SPG, and FEM for high-velocity impact applications [C]// The 12th European LS-DYNA Conference. Koblenz: DYNAmore GmbH, 2019.
    [107] JOHNSON G R, BEISSEL S R, STRYK R A. An improved generalized particle algorithm that includes boundaries and interfaces [J]. International Journal for Numerical Methods in Engineering, 2002, 53(4): 875–904. DOI: 10.1002/nme.316.
    [108] JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2003, 28(9): 947–966. DOI: 10.1016/S0734-743X(03)00012-5.
    [109] JOHNSON G R. Numerical algorithms and material models for high-velocity impact computations [J]. International Journal of Impact Engineering, 2011, 38(6): 456–472. DOI: 10.1016/j.ijimpeng.2010.10.017.
    [110] JOHNSON G R, STRYK R A, BEISSEL S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2002, 27(10): 997–1013. DOI: 10.1016/S0734-743X(02)00030-1.
    [111] BEISSEL S R, GERLACH C A, JOHNSON G R. Hypervelocity impact computations with finite elements and meshfree particles [J]. International Journal of Impact Engineering, 2006, 33(1–12): 80–90. DOI: 10.1016/j.ijimpeng.2006.09.047.
    [112] BEISSEL S R, GERLACH C A, JOHNSON G R. A quantitative analysis of computed hypervelocity debris clouds [J]. Cement Technology, 2008, 35(12): 1410–1418. DOI: 10.1016/j.ijimpeng.2008.07.059.
    [113] JOHNSON G R, BEISSEL S R, GERLACH C A. A 3D combined particle-element method for intense impulsive loading computations involving severe distortions [J]. International Journal of Impact Engineering, 2015, 84: 171–180. DOI: 10.1016/j.ijimpeng.2015.06.006.
    [114] JOHNSON G R, BEISSEL S R, STRYK R A. A generalized particle algorithm for high velocity impact computations [J]. Computational Mechanics, 2000, 25: 245–256. DOI: 10.1007/s004660050473.
    [115] GERLACH C A, JOHNSON G R. A contact and sliding interface algorithm for the combined particle-element method [J]. International Journal of Impact Engineering, 2018, 113: 21–28. DOI: 10.1016/j.ijimpeng.2017.11.003.
    [116] SAUER M. Adaptive kopplung des netzfreien SPH-verfahrens mit finiten elementen zur berechnung von impaktvorgängen [D]. Munich: Universität der Bundeswehr München, 2000.
    [117] 王吉, 王肖钧, 卞梁. 光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用 [J]. 爆炸与冲击, 2007, 27(6): 44–50. DOI: 10.11883/1001-1455(2007)06-0522-07.

    WANG J, WANG X J, BIAN L. Linking of smoothed particle hydronamics method to standard finite element method and its application in impact dynamics [J]. Explosion and Shock Waves, 2007, 27(6): 44–50. DOI: 10.11883/1001-1455(2007)06-0522-07.
    [118] 张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.

    ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics [J]. Explosion and Shock Waves, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.
    [119] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
    [120] PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates [J]. International Journal of Impact Engineering, 1993, 14(1–4): 573–586. DOI: 10.1016/0734-743X(93)90053-A.
    [121] PIEKUTOWSKI A J. Fragmentation initiation threshold for spheres impacting at hypervelocity [J]. International Journal of Impact Engineering, 2003, 29(1–10): 563–574. DOI: 10.1016/j.ijimpeng.2003.10.005.
    [122] HE Y, BAYLY A E, HASSANPOUR A, et al. A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces [J]. Powder Technology, 2018, 338: 548–562. DOI: 10.1016/j.powtec.2018.07.043.
    [123] ZAITSEV Y B, WITTMANN F H. Simulation of crack propagation and failure of concrete [J]. Matériaux et Construction, 1981, 14: 357–365. DOI: 10.1007/BF02478729.
    [124] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
    [125] SANTOSA S, WIERZBICKI T. On the modeling of crush behavior of a closed-cell aluminum foam structure [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(4): 645–669. DOI: 10.1016/S0022-5096(97)00082-3.
    [126] LI K, GAO X L, ROY A K. Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano’s second theorem [J]. Composites Science and Technology, 2003, 63(12): 1769–1781. DOI: 10.1016/S0266-3538(03)00117-9.
    [127] CHEON S S, MEGUID S A. Crush behavior of metallic foams for passenger car design [J]. International Journal of Automotive Technology, 2004, 5(1): 17–22. DOI: 10.1109/TVT.2004.823505.
    [128] TUNVIR K, KIM A, CHEON S. Analytical solution for crushing behavior of closed cell al-alloy foam [J]. Mechanics of Advanced Materials and Structures, 2007, 14: 321–327. DOI: 10.1080/15376490600845660.
    [129] 冯阳, 梁增友, 吴鸿超, 等. 基于渗流法的泡沫铝细观结构模型研究 [J]. 中北大学学报(自然科学版), 2016, 37(1): 90–96. DOI: 10.3969/j.issn.1673-3193.2016.01.017.

    FENG Y, LIANG Z Y, WU H C, et al. Research on micro structural model of open-cell aluminum foam based on infiltration casting methods [J]. Journal of North University of China (Natural Science Edition), 2016, 37(1): 90–96. DOI: 10.3969/j.issn.1673-3193.2016.01.017.
    [130] LI L, XUE P, CHEN Y, et al. Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams [J]. Materials Science & Engineering A, 2015, 636: 60–69. DOI: 10.1016/j.msea.2015.03.052.
    [131] TEKOĞLU C, GIBSON L, PARDOEN T, et al. Size effects in foams: experiments and modeling [J]. Progress in Materials Science, 2011, 56(2): 109–138. DOI: 10.1016/j.pmatsci.2010.06.001.
    [132] 王长峰, 郑志军, 虞吉林. 泡沫杆撞击刚性壁的动态压溃模型 [J]. 爆炸与冲击, 2013, 33(6): 587–593. DOI: 10.11883/1001-1455(2013)06-0587-07.

    WANG C F, ZHENG Z J, YU J L. Dynamic crushing models for a foam rod striking a rigid wall [J]. Explosion and Shock Waves, 2013, 33(6): 587–593. DOI: 10.11883/1001-1455(2013)06-0587-07.
    [133] LI Z Q, ZHANG J J, FAN J H, et al. On crushing response of the three-dimensional closed-cell foam based on Voronoi model [J]. Mechanics of Materials, 2014, 68: 85–94. DOI: 10.1016/j.mechmat.2013.08.009.
    [134] TANG L Q, SHI X P, ZHANG L, et al. Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams [J]. Acta Mechanica, 2014, 225: 1361–1372. DOI: 10.1007/s00707-013-1054-4.
    [135] ZHANG X T, WANG R Q, LIU J X, et al. A numerical method for the ballistic performance prediction of the sandwiched open cell aluminum foam under hypervelocity impact [J]. Aerospace Science and Technology, 2018, 75: 254–260. DOI: 10.1016/j.ast.2017.12.034.
    [136] WEJRZANOWSKI T, SKIBINSKI J, SZUMBARSKI J, et al. Structure of foams modeled by Laguerre–Voronoi tessellations [J]. Computational Materials Science, 2013, 67: 216–221. DOI: 10.1016/j.commatsci.2012.08.046.
    [137] FAN Z G, WU Y G, ZHAO X H, et al. Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres [J]. Computational materials science, 2004, 29(3): 301–308. DOI: 10.1016/j.commatsci.2003.10.006.
    [138] REDENBACH C. Microstructure models for cellular materials [J]. Computational Materials Science, 2009, 44(4): 1397–1407. DOI: 10.1016/j.commatsci.2008.09.018.
    [139] FANG Q, ZHANG J H, ZHANG Y D, et al. A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings [J]. International Journal of Impact Engineering, 2015, 82: 103–112. DOI: 10.1016/j.ijimpeng.2014.10.009.
    [140] FANG Q, ZHANG J H, ZHANG Y D, et al. Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact [J]. Composite Structures, 2015, 124: 409–420. DOI: 10.1016/j.compstruct.2015.01.001.
    [141] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. DOI: 10.1016/j.jmps.2014.07.013.
    [142] ZHANG C Y, TANG L Q, YANG B, et al. Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams [J]. Computational Materials Science, 2013, 79: 45–51. DOI: 10.1016/j.commatsci.2013.05.046.
    [143] GREENBERGER M. An a priori determination of serial correlation in computer generated random numbers [J]. Mathematics of Computation, 1961, 15(76): 383–389. DOI: 10.1090/S0025-5718-1961-0144489-8.
    [144] FANG Q, ZHANG J H, CHEN L, et al. An algorithm for the grain-level modelling of a dry sand particulate system [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(5): 055021. DOI: 10.1088/0965-0393/22/5/055021.
    [145] MAIRE E, FAZEKAS A, SALVO L, et al. X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems [J]. Composites Science and Technology, 2003, 63(16): 2431–2443. DOI: 10.1016/S0266-3538(03)00276-8.
    [146] MCDONALD S A, MUMMERY P M, JOHNSON G, et al. Characterization of the three-dimensional structure of a metallic foam during compressive deformation [J]. Journal of Microscopy, 2006, 223(2): 150–158. DOI: 10.1111/j.1365-2818.2006.01607.x.
    [147] JEON I, ASAHINA T, KANG K-J, et al. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography [J]. Mechanics of Materials, 2010, 42(3): 227–236. DOI: 10.1016/j.mechmat.2010.01.003.
    [148] SAENGER E H, URIBE D, JÄNICKE R, et al. Digital material laboratory: wave propagation effects in open-cell aluminium foams [J]. International Journal of Engineering Science, 2012, 58: 115–123. DOI: 10.1016/j.ijengsci.2012.03.030.
    [149] 陈鹏. 泡沫铝夹芯结构力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    CHEN P. Research on mechanical properties of aluminum foam sandwich structure [D]. Harbin: Harbin Institute of Technology, 2013.
    [150] SUN Y L, LI Q M, LOWE T, et al. Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling [J]. Materials and Design, 2016, 89: 215–224. DOI: 10.1016/j.matdes.2015.09.109.
    [151] 程振, 方秦, 张锦华, 等. 闭孔泡沫金属三维细观模型建模方法 [J]. 工程力学, 2017, 34(8): 212–221. DOI: 10.6052/j.issn.1000-4750.2016.02.0098.

    CHENG Z, FANG Q, ZHANG J H, et al. Mesoscopic methodology for the three-dimensional modelling of closed-cell metallic foam [J]. Engineering Mechanics, 2017, 34(8): 212–221. DOI: 10.6052/j.issn.1000-4750.2016.02.0098.
    [152] 李侯贞强, 张亚栋, 张锦华, 等. 基于CT的泡沫铝三维细观模型重建及应用 [J]. 北京航空航天大学学报, 2018, 44(1): 160–168. DOI: 10.13700/j.bh.1001-5965.2016.0959.

    LI H Z Q, ZHANG Y D, ZHANG J H, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160–168. DOI: 10.13700/j.bh.1001-5965.2016.0959.
  • 加载中
图(22)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  561
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-09-03
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

/

返回文章
返回