基于红外辐射的爆炸火焰温度补偿测算技术

王玮 杜红棉 范锦彪 薛培康

王玮, 杜红棉, 范锦彪, 薛培康. 基于红外辐射的爆炸火焰温度补偿测算技术[J]. 爆炸与冲击, 2021, 41(5): 054101. doi: 10.11883/bzycj-2020-0302
引用本文: 王玮, 杜红棉, 范锦彪, 薛培康. 基于红外辐射的爆炸火焰温度补偿测算技术[J]. 爆炸与冲击, 2021, 41(5): 054101. doi: 10.11883/bzycj-2020-0302
WANG Wei, DU Hongmian, FAN Jinbiao, XUE Peikang. Measurement and calculation technology of temperature compensation of explosion flame based on infrared radiation[J]. Explosion And Shock Waves, 2021, 41(5): 054101. doi: 10.11883/bzycj-2020-0302
Citation: WANG Wei, DU Hongmian, FAN Jinbiao, XUE Peikang. Measurement and calculation technology of temperature compensation of explosion flame based on infrared radiation[J]. Explosion And Shock Waves, 2021, 41(5): 054101. doi: 10.11883/bzycj-2020-0302

基于红外辐射的爆炸火焰温度补偿测算技术

doi: 10.11883/bzycj-2020-0302
基金项目: 国家自然科学基金(61701445)
详细信息
    作者简介:

    王 玮(1996- ),男,硕士研究生,s1815040@st.nuc.edu.cn

    通讯作者:

    杜红棉(1977- ),女,博士,副教授,duhongmian@nuc.edu.cn

  • 中图分类号: O384; TJ06

Measurement and calculation technology of temperature compensation of explosion flame based on infrared radiation

  • 摘要: 应用辐射测温法进行爆炸火焰温度测试时,火焰发射率取经验定值的方法与火焰燃烧机理存在较大的偏差,同时测点距离与环境温湿度也会导致不同程度的热辐射衰减,从而影响爆炸火焰温度的测量精度。本文针对上述两个问题,基于大气辐射理论与光学传播规律,提出了辐射路径衰减补偿模型,结合由红外热像仪和比色测温仪测量的爆炸火焰动态发射率,对爆炸场火焰真温进行联合反演,并将测算结果与比色测温仪测得的火焰表面温度进行对比,得到了反演温度误差范围。试验结果表明,利用本文所提出的补偿模型测算得到的爆炸火焰温度,误差由补偿前的55.699%~89.847%降低到11.292%~59.077%,有效提高了外场爆炸瞬态火焰温度的测算精度。
  • 图  1  成像原理光路图

    Figure  1.  Optical path diagram of imaging principle

    图  2  标定现场与仪器温度标定

    Figure  2.  Calibration site and instrument temperature calibration test

    图  3  温度数据拟合曲线及残差

    Figure  3.  Temperature data fitting curve and residual errors

    图  4  红外热像仪测量火焰发射率时的装置排布

    Figure  4.  Device arrangement of infrared thermal imager to measure flame emissivity

    图  5  试验现场

    Figure  5.  Test site

    图  6  比色测温仪与红外热像仪对焦覆盖区域对比

    Figure  6.  Contrast of focus coverage area between colorimetric thermometer and infrared thermal imager

    图  7  试验爆炸火焰红外热图像

    Figure  7.  Infrared images of explosion flame by tests

    图  8  爆炸火焰尺寸与热像仪水平视场对比图像

    Figure  8.  Comparison of explosion flame size and horizontal field of view of thermal imager

    图  9  试验爆炸火焰发射率及其温度随时间的变化

    Figure  9.  Variation of emissivity and temperature of explosive flame with time in the tests

    图  10  试验爆炸火焰补偿反演温度变化趋势

    Figure  10.  Explosion flame compensation inversion temperature trends in the tests

    图  11  两次试验中联合补偿反演温度误差对比

    Figure  11.  Comparison of temperature errors in inversion of combined compensation in two tests

    表  1  大气透射率计算表

    Table  1.   Atmospheric transmittance

    试验编号d/mTu/℃w/%${\tau _{{R_0}}}$${\tau '_{{R_0}}}$${\tau '_d}$τ
    136.01.7051.00.6820.7830.7490.651
    260.027.079.90.6340.7470.6220.527
    下载: 导出CSV

    表  2  试验中火焰动态发射率

    Table  2.   Flame dynamic emissivity in the tests

    试验1试验2
    Time/msεfTime/msεf
    84550.88250050.922
    84750.85650300.716
    84900.55850500.664
    85000.45750650.613
    85050.42150800.573
    85100.39351000.514
    85700.30951750.356
    85850.30651900.345
    86200.29952100.343
    下载: 导出CSV

    表  3  第1/2次试验中的爆炸火焰部分补偿反演温度及相对误差

    Table  3.   Compensation inversion temperature and relative error of explosion flame in two tests

    试验Time/msTc/℃Tp/℃Tf/℃Tcolor/℃误差/%
    IR-testCompensation
    18460693.6111419.0561672.0522208.25268.59024.282
    8480608.3421255.8311565.0702143.55571.62026.987
    8495481.1071009.3081386.6432119.14177.29734.568
    8500444.863938.4771583.4161323.39078.94737.370
    8660177.488408.085669.1061588.00188.82457.865
    8695159.501390.107642.8961570.99789.84759.077
    25010935.0631530.0821872.3372110.68555.69911.292
    5095857.6911413.3761765.6482057.99158.32414.205
    5110798.4931309.1911658.1142010.00260.27417.507
    5125739.9001204.1391545.1671963.00562.30821.286
    5210496.242752.034973.7931651.99969.96141.054
    5285404.437579.728723.3891510.00073.21752.093
    下载: 导出CSV
  • [1] ZHANG Y C, WANG Z K, FU X B, et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager [J]. Infrared Physics & Technology, 2019, 102: 103020. DOI: 10.1016/j.infrared.2019.103020.
    [2] SHAO L C, ZHOU Z J, CHEN L P, et al. Study of an improved two-colour method integrated with the emissivity ratio model and its application to air-and oxy-fuel flames in industrial furnaces [J]. Measurement, 2018, 123: 54–61. DOI: 10.1016/j.measurement.2018.03.024.
    [3] 杨词银, 张建萍, 曹立华. 基于大气透过率比例校正的目标辐射测量 [J]. 光学 精密工程, 2012, 20(7): 1626–1635. DOI: 10.3788/OPE.20122007.1626.

    YANG C Y, ZHANG J P, CAO L H. Infrared radiation measurement based on proportional corrected atmospheric transmittance [J]. Optics and Precision Engineering, 2012, 20(7): 1626–1635. DOI: 10.3788/OPE.20122007.1626.
    [4] 赵晨阳, 冯浩, 黄晓敏, 等. 红外测温技术在爆炸场温度测试中的精度研究 [J]. 红外技术, 2014, 36(8): 676–679. DOI: 10.11846/j.issn.1001_8891.201408015.

    ZHAO C Y, FENG H, HUANG X M, et al. Research on the precision of the infrared temperature-measuring technology in explosion fields temperature test [J]. Infrared Technology, 2014, 36(8): 676–679. DOI: 10.11846/j.issn.1001_8891.201408015.
    [5] MITROFANOV V V, PINAEV A V, ZHDAN S A. Calculations of detonation waves in gas-droplet systems [J]. Acta Astronautica, 1979, 6(3−4): 281–296. DOI: 10.1016/0094-5765(79)90099-7.
    [6] 李云红, 孙晓刚, 原桂彬. 红外热像仪精确测温技术 [J]. 光学 精密工程, 2007, 15(9): 1336–1341. DOI: 10.3321/j.issn:1004-924x.2007.09.005.

    LI Y H, SUN X G, YUAN G B. Accurate measuring temperature with infrared thermal imager [J]. Optics and Precision Engineering, 2007, 15(9): 1336–1341. DOI: 10.3321/j.issn:1004-924x.2007.09.005.
    [7] WANG L Y, DU H M, XU H. Compensation method for infrared temperature measurement of explosive fireball [J]. Thermochimica Acta, 2019, 680: 178342. DOI: 10.1016/j.tca.2019.178342.
    [8] 安连生, 李林, 李全臣. 应用光学[M]. 3版. 北京: 北京理工大学出版社, 2002: 112−113.
    [9] ZHANG Z L, SUN W M, SHI L W, et al. Multi-wavelength pyrometry for temperature measurement in gas flames [C] // Proceedings of 2012 International Conference on Measurement, Information and Control. Harbin: IEEE, 2012: 198−201. DOI: 10.1109/MIC.2012.6273255.
    [10] DE RIS J. Fire radiation—A review [J]. Symposium (International) on Combustion, 1979, 17(1): 1003–1016. DOI: 10.1016/S0082-0784(79)80097-1.
    [11] SIEGEL R, HOWELL J R. Thermal radiation heat transfer [M]. 4th ed. Washington: Hemisphere Pub Corp, 1981.
    [12] GOROSHIN S, FROST D L, LEVINE J, et al. Optical pyrometry of fireballs of metalized explosives [J]. Propellants Explosives Pyrotechnics, 2006, 31(3): 169–181. DOI: 10.1002/prep.200600024.
    [13] LYNCH P, KRIER H, GLUMAC N. Emissivity of aluminum-oxide particle clouds: application to pyrometry of explosive fireballs [J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2): 301–308. DOI: 10.2514/1.43853.
    [14] 刘丹丹, 黄印博, 魏合理, 等. 我国典型地区大气透过率的计算分析 [J]. 大气与环境光学学报, 2013, 8(4): 262–270. DOI: 10.3969/j.issn.1673-6141.2013.04.003.

    LIU D D, HUANG Y B, WEI H L, et al. Atmospheric transmittance calculation in typical regions of China [J]. Journal of Atmospheric and Environmental Optics, 2013, 8(4): 262–270. DOI: 10.3969/j.issn.1673-6141.2013.04.003.
    [15] 郭立红, 郭汉洲, 杨词银, 等. 利用大气修正因子提高目标红外辐射特性测量精度 [J]. 光学 精密工程, 2016, 24(8): 1871–1877. DOI: 10.3788/OPE.20162408.1871.

    GUO L H, GUO H Z, YANG C Y, et al. Improvement of radiation measurement precision for target by using atmosphere-corrected coefficients [J]. Optics and Precision Engineering, 2016, 24(8): 1871–1877. DOI: 10.3788/OPE.20162408.1871.
    [16] ORLOFF L, DE RIS J. Froude modeling of pool fires [J]. Symposium (International) on Combustion, 1982, 19(1): 885–895. DOI: 10.1016/S0082-0784(82)80264-6.
    [17] 齐文娟. 发射率对红外测温精度的影响[D]. 长春: 长春理工大学, 2006: 27−32. DOI: 10.7666/d.y930659.
    [18] WANG P F, LIU N A, HARTL K, et al. Measurement of the flow field of fire whirl [J]. Fire Technology, 2016, 52: 263–272. DOI: 10.1007/s10694-015-0511-0.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  153
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2021-04-02
  • 刊出日期:  2021-05-05

目录

    /

    返回文章
    返回