93W杆式弹超高速撞击多层Q345钢靶毁伤及微观分析

李名锐 冯娜 蔡青山 陈春林 马坤 尹立新 周刚

李名锐, 冯娜, 蔡青山, 陈春林, 马坤, 尹立新, 周刚. 93W杆式弹超高速撞击多层Q345钢靶毁伤及微观分析[J]. 爆炸与冲击, 2021, 41(2): 021408. doi: 10.11883/bzycj-2020-0303
引用本文: 李名锐, 冯娜, 蔡青山, 陈春林, 马坤, 尹立新, 周刚. 93W杆式弹超高速撞击多层Q345钢靶毁伤及微观分析[J]. 爆炸与冲击, 2021, 41(2): 021408. doi: 10.11883/bzycj-2020-0303
LI Mingrui, FENG Na, CAI Qingshan, CHEN Chunlin, MA Kun, YIN Lixin, ZHOU Gang. Damage of a multi-layer Q345 target under hypervelocity impact of a rod-shaped 93W projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021408. doi: 10.11883/bzycj-2020-0303
Citation: LI Mingrui, FENG Na, CAI Qingshan, CHEN Chunlin, MA Kun, YIN Lixin, ZHOU Gang. Damage of a multi-layer Q345 target under hypervelocity impact of a rod-shaped 93W projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021408. doi: 10.11883/bzycj-2020-0303

93W杆式弹超高速撞击多层Q345钢靶毁伤及微观分析

doi: 10.11883/bzycj-2020-0303
基金项目: 国家自然科学基金(11402213, 11772269)
详细信息
    作者简介:

    李名锐(1983- ),男,博士,副研究员,fengna@nint.ac.cn

    通讯作者:

    周 刚(1964- ),男,博士,研究员,博士生导师,gzhou@nint.ac.cn

  • 中图分类号: O385

Damage of a multi-layer Q345 target under hypervelocity impact of a rod-shaped 93W projectile

  • 摘要: 为了解杆式弹超高速撞击多层薄钢靶的破坏过程及毁伤机理,开展了克级93W杆式弹正撞击多层Q345钢靶实验及数值模拟研究,通过扫描电子显微镜(scanning electron microscope,SEM)及金相显微镜,分析了超高速撞击实验后靶板材料的微观组织及成分。结果表明,超高速撞击作用下,靶板呈现出“翻唇”穿孔变形、花瓣状塑性变形、撕裂、撞击成坑及鼓包等破坏模式。靶板前3层毁伤以超高速穿孔为主,孔洞数目多但面积小,后几层靶板毁伤孔洞数目少且孔径呈先增大后减小趋势。微观分析表明靶材在强冲击压力下发生晶粒碎化、熔化及再结晶,撞击过程中会形成微孔聚集与微裂纹,可见靶板失效主要是熔融混合物冷却过程中产生的热应力与切应力下的剪切撕裂综合作用的结果。
  • 图  1  实验1中10层靶板各层正面的毁伤

    Figure  1.  Damage at the front face of each layer of a ten-layer target in experiment 1

    图  2  实验2中10层靶板各层正面的毁伤

    Figure  2.  Damage at the front face of each layer of a ten-layer target in experiment 2

    图  3  实验2中10层靶板各层背面的毁伤

    Figure  3.  Damage at the back face of each layer of a ten-layer target in experiment 2

    图  4  实验2中10层靶板各层毁伤侧视图(图中标尺均为5 mm)

    Figure  4.  Side view of damage in each layer of a ten-layer target in experiment 2 (the scale bars all represent 5 mm)

    图  5  实验后10层靶板各层的孔洞数目、中心孔等效直径、穿孔毁伤总面积及毁伤范围覆盖圆直径

    Figure  5.  Equivalent diameter of center hole, number and total areas of holes, diameter of damage circle in each layer of ten-layer targets after experiments

    图  6  93W弹体以2.76 km/s的速度撞击3层靶的数值模拟过程(0~0.1 ms,间隔0.01 ms)

    Figure  6.  A numerically simulated sequence for the penetration process of a rod-shaped 93W projectile with the initial velocity of 2.76 km/s into a three-layer Q345 target from 0 to 0.1 ms at the time interval of 0.01 ms

    图  7  数值模拟得到的3层Q345钢靶各层毁伤情况

    Figure  7.  Numerically-simulated damage in each layer of the three-layer Q345 steel target

    图  8  首层“翻唇”穿孔断面扫描电镜图像

    Figure  8.  Scanning electron microscope images for cross-sections of perforated lips on the first layer

    图  9  首层靶板表面穿孔周围扫描电镜图像

    Figure  9.  Scanning electron microscope image along the radial direction around the perforated hole in the first layer

    图  10  首层靶板表面穿孔周围金相图((a)→(f):从弹孔边缘到远离弹孔)

    Figure  10.  Metallographic images along the radial direction around the perforated hole in the first layer ((a)→(f): from the edge of the perforated hole to away from the perforated hole)

    图  11  $ \varnothing $3.45 mm、长径比3的杆式弹脱壳后以3 km/s速度撞击6层Q235板各层SEM断口形貌

    Figure  11.  SEM fracture morphology of a six-layer Q235 target under the 3 km/s impact of a rod-shaped projectile with the diameter of 3.45 mm and the aspect ratio of 3

    图  12  靶板2-7花瓣穿孔形貌SEM图

    Figure  12.  SEM images of the perforation in the 7th layer of experiment 2

    图  13  靶板表面弹坑及坑附近区域无定形态物质SEM图及无定形态物质能量色散谱

    Figure  13.  SEM images of the craters at the surface of the target and amorphous material near the craters as well as their energy dispersive spectra

    表  1  93钨合金的状态方程、强度模型材料参数

    Table  1.   Parameters of the equation of state and the strength model for 93W alloy

    ρW0/(g·cm−3)cW0/(km·s−1)sWγW0GW0/GPaYW0/GPaYW,max/GPaβn$\dfrac{{{\rm{d}}{G_{\rm{W}}}}}{{{\rm{d}}p}}$$\dfrac{{{\rm{d}}{G_{\rm{W}}}}}{{{\rm{d}}T}}/{\rm{(MPa}}\cdot{{\rm{K}}^{{\rm{ - 1}}}}{\rm{)}}$$\dfrac{ { {\rm{d} }Y} }{ { {\rm{d} }p} }$
    17.64.041.231.671321.461.30.11.794−400.019 027
    下载: 导出CSV

    表  2  Q345钢的状态方程、强度模型材料参数

    Table  2.   Parameters of the equation of state and the strength model for Q345 steel

    ρs0/(g·cm−3)cs0/(m·s−1)ssγs0A/MPaB/MPanCmTm/K${\dot \varepsilon _{ {\rm{s0} } } }$/s−1
    7.834 5691.492.17374795.70.454 50.015 860.885 6−1 7950.001
    下载: 导出CSV

    表  3  聚碳酸酯的状态方程、强度方程材料参数

    Table  3.   Parameters of the equation of state and the strength model for polycarbonate

    ρPC,0/(g·cm−3)cPC,0/(m·s−1)sPCγPC,0E/GPaYPC,0 /MPa
    1.21 9332.650.61180.6
    下载: 导出CSV

    表  4  3层靶各层毁伤面主孔等效直径实验及模拟结果比较

    Table  4.   Experimental and simulated results of the equivalent diameter of the center hole in each layer of the three-layer Q345 steel target

    层别等效直径/mm误差/%
    实验模拟
    第1层16.3416.151.162
    第2层38.1136.294.773
    第3层14.0615.449.809
    下载: 导出CSV

    表  5  第7层靶板中熔化后凝固的无定形态物质能量色散谱结果

    Table  5.   Energy dispersive spectrum analysis of amorphous material solidified after melting in the 7th layer

    元素质量分数/%原子数分数/% 元素质量分数/%原子数分数/%
    C 2.4513.14 Ni 2.18 2.39
    Fe63.3873.23 W32.0011.23
    下载: 导出CSV

    表  6  撞击坑及孔洞熔化后凝固的无定形态物质EDS结果

    Table  6.   EDS analysis of amorphous material solidified after melting in impact crater and cavity

    元素质量分数/%原子数分数/% 元素质量分数/%原子数分数/%
    C 4.6717.12 K12.67 3.01
    O15.7543.37 Fe30.0323.70
    Na 0.78 1.49 W44.9410.77
    Mo 1.17 0.54
    下载: 导出CSV
  • [1] 龙源, 岳小兵, 周翔, 等. 高速钢弹对多层大间隔金属靶的侵彻特性研究 [J]. 南京理工大学学报, 2004, 28(4): 369–374. DOI: 10.3969/j.issn.1005-9830.2004.04.008.

    LONG Y, YUE X B, ZHOU X, et al. Characteristics of high-speed steel projectiles penetrating into multi-layer spaced metal plates [J]. Journal of Nanjing University of Science and Technology, 2004, 28(4): 369–374. DOI: 10.3969/j.issn.1005-9830.2004.04.008.
    [2] 肖云凯, 吴昊, 方秦. 长杆弹超高速侵彻金属靶体的实验和模型分析 [J]. 兵工学报, 2017, 38(S1): 15–23.

    XIAO Y K, WU H, FANG Q. Experiment and theoretical model analysis of hypervelocity penetration of long-rod projectiles into metallic targets [J]. Acta Armamentarii, 2017, 38(S1): 15–23.
    [3] 马坤, 李名锐, 陈春林, 等. 93钨合金弹体超高速撞击钢板破片群分布数值模拟 [J]. 兵工学报, 2019, 40(10): 2022–2031. DOI: 10.3969/j.issn.1000-1093.2019.10.007.

    MA K, LI M R, CHEN C L, et al. Simulation analysis of distribution of fragments of hypervelocity 93w projectile impacting on a steel plate target [J]. Acta Armamentarii, 2019, 40(10): 2022–2031. DOI: 10.3969/j.issn.1000-1093.2019.10.007.
    [4] 赵汝岩, 卢洪义, 朱敏. 杆式动能体侵彻多层靶板数值仿真 [J]. 弹箭与制导学报, 2012, 32(6): 96–98, 116. DOI: 10.3969/j.issn.1673-9728.2012.06.029.

    ZHAO R Y, LU H Y, ZHU M. Numerical analysis of rod kinetic energy projectile penetrating into multilayer spaced metal plates [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6): 96–98, 116. DOI: 10.3969/j.issn.1673-9728.2012.06.029.
    [5] 刘洋, 姚江涛, 李国林, 等. 用数值模拟法研究战斗部侵彻多层间隔靶 [J]. 海军航空工程学院学报, 2009, 24(2): 144–148. DOI: 10.3969/j.issn.1673-1522.2009.02.007.

    LIU Y, YAO J T, LI G L, et al. Numerical simulation of warhead penetrating into multi-layer spaced target [J]. Journal of Naval Aeronautical and Astronautical University, 2009, 24(2): 144–148. DOI: 10.3969/j.issn.1673-1522.2009.02.007.
    [6] 汪庆桃, 吴克刚, 陈志阳. 圆柱形长杆超高速正碰撞薄板结构破碎效应 [J]. 振动与冲击, 2017, 36(5): 54–60. DOI: 10.13465/j.cnki.jvs.2017.05.009.

    WANG Q T, WU K G, CHEN Z Y. Fragmentation effect of a long cylindrical rod with a hypervelocity normally impacting a thin plate structure [J]. Journal of Vibration and Shock, 2017, 36(5): 54–60. DOI: 10.13465/j.cnki.jvs.2017.05.009.
    [7] 李金泉. 穿甲侵彻机理及绝热剪切带特性研究[D]. 南京: 南京理工大学, 2005: 22−42.

    LI J Q. Study of armor-piercing mechanism and adiabatic shear banding characteristic[D]. Nanjing: Nanjing University of Science and Technology, 2005: 22−42.
    [8] 罗荣梅. 细晶钨合金穿甲弹靶作用机理研究[D]. 南京: 南京理工大学, 2016: 19−55.

    LUO R M. Study on penetration mechanism of fine-grained tungsten heavy alloy penetrator[D]. Nanjing: Nanjing University of Science and Technology, 2016: 19−55.
    [9] 高华, 熊超, 殷军辉. 弹丸侵彻多层异质复合靶板中装甲钢变形细观和微观机理研究 [J]. 兵工学报, 2018, 39(8): 1565–1575. DOI: 10.3969/j.issn.1000-1093.2018.08.013.

    GAO H, XIONG C, YIN J H. Research on macroscopic and microscopic mechanisms of deformation of armor steel in multilayer heterogeneous composite target subjected to projectile [J]. Acta Armamentarii, 2018, 39(8): 1565–1575. DOI: 10.3969/j.issn.1000-1093.2018.08.013.
    [10] 李争, 刘元雪, 张裕. 动能弹侵彻机理及其防护研究进展 [J]. 兵器装备工程学报, 2016, 37(3): 9–14. DOI: 10.11809/scbgxb2016.03.003.

    LI Z, LIU Y X, ZHANG Y. Research progress of kinetic energy projectile penetration mechanism and protection [J]. Journal of Ordnance Equipment Engineering, 2016, 37(3): 9–14. DOI: 10.11809/scbgxb2016.03.003.
    [11] 刘宗伟, 武海军, 张学伦, 等. 高超弹体侵蚀机理及抗侵蚀设计研究 [J]. 兵器装备工程学报, 2017, 38(4): 46–49. DOI: 10.11809/scbgxb2017.04.010.

    LIU Z W, WU H J, ZHANG X L, et al. Eroding mechanism and anti-eroding design technique of high speed penetrator [J]. Journal of Ordnance Equipment Engineering, 2017, 38(4): 46–49. DOI: 10.11809/scbgxb2017.04.010.
    [12] 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.

    QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
    [13] 蒋东, 李永池, 于少娟, 等. 钨合金长杆弹侵彻约束AD95陶瓷复合靶 [J]. 爆炸与冲击, 2010, 30(1): 91–95. DOI: 10.11883/1001-1455(2010)01-0091-05.

    JIANG D, LI Y C, YU S J, et al. Penetration of confined AD95 ceramic composite targets by tungsten long rods [J]. Explosion and Shock Waves, 2010, 30(1): 91–95. DOI: 10.11883/1001-1455(2010)01-0091-05.
    [14] 李平, 李大红, 宁建国, 等. Al2O3陶瓷复合靶抗长杆弹侵彻性能和机理实验研究 [J]. 爆炸与冲击, 2003, 23(4): 289–294. DOI: 10.3321/j.issn:1001-1455.2003.04.001.

    LI P, LI D H, NING J G, et al. Experimental study on the ballistic performance and mechanism of confined ceramic targets against long rod penetrators [J]. Explosion and Shock Waves, 2003, 23(4): 289–294. DOI: 10.3321/j.issn:1001-1455.2003.04.001.
    [15] 楼建锋. 侵彻半无限厚靶的理论模型和数值模拟研究[D]. 绵阳: 中国工程物理研究院, 2012: 25−41.

    LOU J F. Theoretical model and numerical study on penetrating into semi-infinite targets[D]. Mianyang: China Academy of Engineering Physics, 2012: 25−41.
    [16] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000: 1−5.
    [17] 杨益, 李晓军, 朱大明, 等. 超高速碰撞材料毁伤效应研究进展 [J]. 兵器材料科学与工程, 2014, 37(5): 133–140. DOI: 10.3969/j.issn.1004-244X.2014.05.037.

    YANG Y, LI X J, ZHU D M, et al. Research development of materials damage effect under hypervelocity impact [J]. Ordnance Material Science and Engineering, 2014, 37(5): 133–140. DOI: 10.3969/j.issn.1004-244X.2014.05.037.
    [18] 牛瑞涛. 空间碎片铝网防护屏超高速撞击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 2−10.

    NIU R T. Hypervelocity impact characteristic investigation of space debris aluminum mesh bumper[D]. Harbin: Harbin Institute of Technology, 2010: 2−10.
    [19] 管公顺. 航天器空间碎片防护结构超高速撞击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 33−35.

    GUAN G S. Hypervelocity impact characteristic investigation of spacecraft space debris shield configuration[D]. Harbin: Harbin Institute of Technology, 2006: 33−35.
    [20] Century Dynamics, Inc. AUTODYN theory manual revision 4.3[M]. Concord, CA: Century Dynamics, Inc., 2003.
    [21] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals for applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51: 1498–1504. DOI: 10.1063/1.327799.
    [22] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[C]// Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands 1983: 541−547.
    [23] 蔡宣明. PBX炸药动态力学行为及起爆特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 83−84.

    CAI X M. Study on dynamic mechanical behavior and initiation characteristic of PBX[D]. Harbin: Harbin Institute of Technology, 2015: 83−84.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  262
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回