冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律

姜亚成 周磊 朱哲明 李剑飞 牛草原 应鹏

姜亚成, 周磊, 朱哲明, 李剑飞, 牛草原, 应鹏. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律[J]. 爆炸与冲击, 2021, 41(4): 043104. doi: 10.11883/bzycj-2020-0330
引用本文: 姜亚成, 周磊, 朱哲明, 李剑飞, 牛草原, 应鹏. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律[J]. 爆炸与冲击, 2021, 41(4): 043104. doi: 10.11883/bzycj-2020-0330
JIANG Yacheng, ZHOU Lei, ZHU Zheming, LI Jianfei, NIU Caoyuan, YING Peng. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads[J]. Explosion And Shock Waves, 2021, 41(4): 043104. doi: 10.11883/bzycj-2020-0330
Citation: JIANG Yacheng, ZHOU Lei, ZHU Zheming, LI Jianfei, NIU Caoyuan, YING Peng. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads[J]. Explosion And Shock Waves, 2021, 41(4): 043104. doi: 10.11883/bzycj-2020-0330

冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律

doi: 10.11883/bzycj-2020-0330
基金项目: 国家自然科学基金(U19A2098,11672194,11702181);深地科学与工程教育部重点实验室(四川大学)开放基金(DESE202005)
详细信息
    作者简介:

    姜亚成(1994- ),男,硕士研究生,jiangyc210@163.com

    通讯作者:

    周 磊(1990- ),男,博士,助理研究员,zhouleittkx@126.com

  • 中图分类号: O389;TU45

Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads

  • 摘要: 以寒区隧道为工程背景研究在冻融循环作用下围岩内Ⅰ型裂纹的动态起裂特性演化规律,采用隧道模型试件作为研究对象,开展冻融循环试验与大尺度落锤冲击试验,得到岩石试件经历不同冻融循环次数后的相关力学参数,并在裂纹尖端粘贴裂纹扩展计(crack propagation gauge, CPG)测量预制裂纹的动态起裂时间。采用有限元软件建立相应的数值模型计算裂纹尖端的动态应力强度因子,采用试验-数值法计算动态起裂韧度,随后采用电镜对冻融循环后的试样进行扫描,研究冻融循环对岩石材料的细观损伤机制。研究结果表明:随着冻融循环次数的增加,岩石材料的纵波、横波波速与弹性模量逐渐减小,而泊松比逐渐增大;砂岩材料的动态起裂韧度随着冻融循环次数的增加逐渐减小,表征线性反比例的特性;材料内部的胶结物质会由于冻融循环的影响而流失,材料的孔隙和裂纹也随着冻融循环次数的增加而变多变大。
  • 图  1  试件模型及尺寸示意图(单位:mm)

    Figure  1.  Sketch of specimen (unit: mm)

    图  2  高低温试验箱

    Figure  2.  High-low temperature test chamber

    图  3  试验装置示意图

    Figure  3.  Drop-weigh test system

    图  4  裂纹扩展计测试系统

    Figure  4.  CPG measuring system

    图  5  纵波波速与弹性模量变化曲线

    Figure  5.  Plots of P-wave velocity and elastic modulus

    图  6  入射端与透射端的脉冲信号曲线

    Figure  6.  Histories of the incident and transmitted plates

    图  7  动态载荷曲线

    Figure  7.  Histories of dynamic loads

    图  8  数值模型网格示意图

    Figure  8.  Sketch map of numerical model

    图  9  动态起裂韧度计算结果

    Figure  9.  Calculation results of dynamic initiation toughness

    图  10  冻融次数与动态起裂韧度的关系曲线

    Figure  10.  Relationship between freeze-thaw cycles and dynamic initiation toughness

    图  11  青砂岩的电镜扫描图

    Figure  11.  Scanning electron microscopes of sandstone

    表  1  5组试件材料的力学参数

    Table  1.   Mechanical parameters for five groups of specimen

    冻融次数孔隙率/%泊松比弹性模量/GPa纵波波速/(m·s−1横波波速/(m·s−1纵波波速降/%横波波速降/%
    012.520.26212.562 5621 4550 0
    1012.960.27010.502 3781 334 7.2 8.3
    2013.350.276 9.142 2541 25312.013.9
    3013.870.283 8.102 1531 18516.018.5
    4014.510.286 7.312 0851 14118.621.6
    下载: 导出CSV

    表  2  冲击试验结果

    Table  2.   Impact test results

    试件冲击速度/(m·s−1起裂时间/μs动态起裂韧度/(MPa·m1/2动态加载率/(MPa·m1/2·s−1
    0-16.563623.0910 404
    0-26.593743.2910 716
    0-36.613673.1810 603
    10-16.483752.87 9 410
    10-26.533712.77 9 082
    10-36.483662.66 8 866
    20-16.573812.54 8 274
    20-26.513892.75 8 730
    20-36.563862.66 8 445
    30-16.523932.41 7 670
    30-26.563972.51 7 952
    30-36.593902.31 7 549
    40-16.563952.11 6 762
    40-26.503922.04 6 623
    40-36.473992.21 7 015
    下载: 导出CSV
  • [1] 高焱, 朱永全, 赵东平, 等. 隧道寒区划分建议及保温排水技术研究 [J]. 岩石力学与工程学报, 2018, 37(S2): 3489–3499. DOI: 10.13722/j.cnki.jrme.2016.1115.

    GAO Y, ZHU Y Q, ZHAO D P, et al. Study on classified suggestion of tunnel in cold region and thermal insulation-considered drainage technology [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3489–3499. DOI: 10.13722/j.cnki.jrme.2016.1115.
    [2] 夏才初, 白雪莹, 韩常领. 冻融作用下多年冻土隧道结构及围岩变形规律 [J]. 哈尔滨工程大学学报, 2020, 41(7): 1016–1021. DOI: 10.11990/jheu.201901077.

    XIA C C, BAI X Y, HAN C L. Deformation rules of surrounding rock and structure of permafrost tunnels under freezeing-thawing cycles [J]. Journal of Harbin Engineering University, 2020, 41(7): 1016–1021. DOI: 10.11990/jheu.201901077.
    [3] 夏才初, 黄文丰, 韩常领. 冻融循环条件下寒区隧道衬砌的服役性能 [J]. 哈尔滨工程大学学报, 2020, 41(3): 347–356. DOI: 10.11990/jheu.201811029.

    XIA C C, HUANG W F, HAN C L. The study of service performance of tunnel lining in cold zone when suffered from freeze-thaw cycles [J]. Journal of Harbin Engineering University, 2020, 41(3): 347–356. DOI: 10.11990/jheu.201811029.
    [4] 那通兴, 张国柱, 陈俊栋. 寒区隧道含相变围岩传热渗流耦合数值分析 [J]. 隧道建设, 2018, 38(2): 144–150. DOI: 10.3973/j.issn.2096-4498.2018.S2.020.

    NA T X, ZHANG G Z, CHEN J D. Coupling numerical analysis of heat transfer and seepage flow of surrounding rocks with phase transition in cold region tunnels [J]. Tunnel Construction, 2018, 38(2): 144–150. DOI: 10.3973/j.issn.2096-4498.2018.S2.020.
    [5] 申艳军, 杨更社, 王铭, 等. 冻融-周期荷载下单裂隙类砂岩损伤及断裂演化试验分析 [J]. 岩石力学与工程学报, 2018, 37(3): 709–717. DOI: 10.13722/j.cnki.jrme.2017.1296.

    SHEN Y J, YANG G S, WANG Ming, et al. Experiments on the damage characteristic and fracture process of single-joint quasi-sandstone under the cyclic freezing-thawing and cyclic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 709–717. DOI: 10.13722/j.cnki.jrme.2017.1296.
    [6] 申艳军, 杨更社, 荣腾龙, 等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析 [J]. 岩石力学与工程学报, 2017, 36(3): 562–570. DOI: 10.13722/j.cnki.jrme.2016.0122.

    SHEN Y J, YANG G S, RONG T L, et al. Localized damage effects of quasi-sandstone with single fracture and fracture behaviors of joint end under cyclic freezeing and thawing [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 562–570. DOI: 10.13722/j.cnki.jrme.2016.0122.
    [7] 张慧梅, 杨更社. 冻融环境下红砂岩力学特性试验及损伤分析 [J]. 力学与实践, 2013, 35(3): 57–61. DOI: 10.6052/1000-0879-12-379.

    ZHANG H M, YANG G S. Mechanical property experiment and damage analysis of red sandstone under freeze-thaw environment [J]. Mechanics in Engineering, 2013, 35(3): 57–61. DOI: 10.6052/1000-0879-12-379.
    [8] 闻磊, 李夕兵, 尹彦波, 等. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究 [J]. 冰川冻土, 2014, 36(3): 632–639. DOI: 10.7522/j.issn.1000-0240.2014.0076.

    WEN L, LI X B, YIN Y B, et al. Study of physico-mechanical properties of granite porphyry and limestone in slopes of open-pit metal mine under freezing-thawing cycles and their application [J]. Journal of Glaciology and Geocryology, 2014, 36(3): 632–639. DOI: 10.7522/j.issn.1000-0240.2014.0076.
    [9] 闻磊, 李夕兵, 唐海燕, 等. 变温度区间冻融作用下岩石物理力学性质研究及工程应用 [J]. 工程力学, 2017, 34(5): 247–256. DOI: 10.6052/j.issn.1000-4750.2015.11.0921.

    WEN L, LI X B, TANG H Y, et al. Study of physico-mechanical characteristics of rock under different frozen-thawed circle temperature range and its engineering application [J]. Engineering Mechanics, 2017, 34(5): 247–256. DOI: 10.6052/j.issn.1000-4750.2015.11.0921.
    [10] 陈宇龙, 张科, 孙欢. 冻融循环作用下岩石表面裂纹扩展过程细观研究 [J]. 土木工程学报, 2019, 52(S1): 1–7. DOI: 10.15951/j.tmgcxb.2019.s1.001.

    CHEN Y L, ZHENG K, SUN H. Meso-research on the development of rock surface crack under freeze-thaw cycles [J]. China Civil Engineering Journal, 2019, 52(S1): 1–7. DOI: 10.15951/j.tmgcxb.2019.s1.001.
    [11] 刘泉声, 黄诗冰, 康永水, 等. 低温冻结岩体单裂隙冻胀力与数值计算研究 [J]. 岩土工程学报, 2015, 37(9): 1572–1580. DOI: 10.11779/CJGE201509003.

    LIU Q S, HUANG S B, KANG Y S, et al. Numerical and theoretical studies on frost heaving pressure in a single fracture of frozen rock mass under low temperature [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1572–1580. DOI: 10.11779/CJGE201509003.
    [12] 刘少赫, 许金余, 王鹏, 等. 冻融红砂岩的SHPB试验研究及细观分析 [J]. 振动与冲击, 2017, 36(20): 203–209. DOI: 10.13465/j.cnki.jvs.2017.20.031.

    LIU S H, XU J Y, WANG P, et al. An SHPB experimental study and microscomic analysis of freeze-thaw red sandstone [J]. Journal of Vibration and Shock, 2017, 36(20): 203–209. DOI: 10.13465/j.cnki.jvs.2017.20.031.
    [13] GHOLAMREZA K, REZA Z S, YASIN A. The effect of freeze-thaw cycles on physical and mechanical properties of upper red formation sandstones, central part of Iran [J]. Arabian Journal of Geosciences, 2015, 8(8): 5991–6001. DOI: 10.1007/s12517-014-1653-y.
    [14] GHOBADI M H, BABAZADEH R. Experimental studies on the effects of cyclic freezing–thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones [J]. Rock Mechanics and Rock Engineering, 2015, 48: 1001–1016. DOI: 10.1007/s00603-014-0609-6.
    [15] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下隧道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [16] 周磊, 朱哲明, 董玉清, 等. 冲击加载下隧道内裂纹的扩展特性及破坏行为 [J]. 爆炸与冲击, 2018, 38(4): 785–794. DOI: 10.11883/bzycj-2016-0383.

    ZHOU L, ZHU Z M, DONG Y Q, et al. The propagation characteristics and failure behavior of crack in tunnel under impact loads [J]. Explosion and Shock Waves, 2018, 38(4): 785–794. DOI: 10.11883/bzycj-2016-0383.
    [17] 付安琪, 蔚立元, 苏海健, 等. 循环冲击损伤后大理岩静态断裂力学特性研究 [J]. 岩石力学与工程学报, 2019, 38(10): 2022–2020. DOI: 10.13722/j.cnki.jrme.2019.0323.

    FU A Q, WEI L Y, SU H J, et al. Experimental study on static fracturing mechanical characteristic of marble after cyclic impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2022–2020. DOI: 10.13722/j.cnki.jrme.2019.0323.
    [18] WANG M, ZHU Z, DONG Y, et al. Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics., 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
    [19] 王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.

    WANG M, ZHU Z M, WANG X. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
    [20] WANG Q Z, FENG F, NI M, et al. Measurement of mode Ⅰ and mode Ⅱ rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [J]. Engineering Fracture Mechanics., 2011, 78(12): 2455–2469. DOI: 10.1016/j.engfracmech.2011.06.004.
    [21] 住房与城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京中国计划出版社, 2013: 17−18.
    [22] 范天佑. 断裂动力学原理与应用 [M]. 北京: 北京理工大学出版社, 2006: 19−22.
    [23] GREGOIRE G, MAIGRE H, RETHORE J, et al. Dynamic crack propagation under mixed-mode loading-comparison between experiments and X-FEM simulations [J]. International Journal of Solids and Structures, 2007, 44: 6517–6534. DOI: 10.1016/j.ijsolstr.2007.02.044.
    [24] 陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口-微观试验研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.

    TAO M, WANG J, LI Z W, et al. Meso and micro-experimental research on the fracture of granite spallation under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.
    [25] 邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化 [J]. 岩土力学, 2019, 40(9): 3447–3456. DOI: 10.16285/j.rsm.2018.1002.

    DENG H F, ZHI Y Y, DUAN L L, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447–3456. DOI: 10.16285/j.rsm.2018.1002.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  191
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-11-16
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回