长杆弹撞击装甲陶瓷界面击溃/侵彻特性

谈梦婷 张先锋 包阔 魏海洋 韩国庆

谈梦婷, 张先锋, 包阔, 魏海洋, 韩国庆. 长杆弹撞击装甲陶瓷界面击溃/侵彻特性[J]. 爆炸与冲击, 2021, 41(3): 031406. doi: 10.11883/bzycj-2020-0338
引用本文: 谈梦婷, 张先锋, 包阔, 魏海洋, 韩国庆. 长杆弹撞击装甲陶瓷界面击溃/侵彻特性[J]. 爆炸与冲击, 2021, 41(3): 031406. doi: 10.11883/bzycj-2020-0338
TAN Mengting, ZHANG Xianfeng, BAO Kuo, WEI Haiyang, HAN Guoqing. Characteristics of interface defeat and penetration during the impact between a ceramic armor and a long-rod projectile[J]. Explosion And Shock Waves, 2021, 41(3): 031406. doi: 10.11883/bzycj-2020-0338
Citation: TAN Mengting, ZHANG Xianfeng, BAO Kuo, WEI Haiyang, HAN Guoqing. Characteristics of interface defeat and penetration during the impact between a ceramic armor and a long-rod projectile[J]. Explosion And Shock Waves, 2021, 41(3): 031406. doi: 10.11883/bzycj-2020-0338

长杆弹撞击装甲陶瓷界面击溃/侵彻特性

doi: 10.11883/bzycj-2020-0338
基金项目: 国家自然科学基金(11772159);中央高校基本科研业务费专项资金(30920021108)
详细信息
    作者简介:

    谈梦婷(1991- ),女,博士,mengting.tan@njust.edu.cn

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O385

Characteristics of interface defeat and penetration during the impact between a ceramic armor and a long-rod projectile

  • 摘要: 界面击溃/驻留效应可以有效提高装甲陶瓷的抗侵彻能力。为研究长杆弹撞击装甲陶瓷界面击溃及侵彻特性,开展了长杆弹撞击装甲陶瓷实验研究。同时,基于裂纹扩展理论建立了考虑界面击溃/驻留效应的长杆弹侵彻装甲陶瓷计算模型,以定量描述界面击溃/驻留效应对装甲陶瓷抗侵彻性能的影响。不同弹靶条件下的界面击溃/侵彻转变速度、界面驻留时间、侵彻速度与侵彻深度的理论计算值与实验结果具有较好的一致性,表明计算模型可靠。在此基础上,分析了弹体及陶瓷材料对界面击溃/驻留及侵彻过程的影响规律。研究结果表明:随着弹体撞击速度的提高,陶瓷表面由界面击溃向侵彻转变。考虑界面击溃/驻留效应的长杆弹侵彻装甲陶瓷理论模型,可以较好地反映不同弹体撞击速度对应的弹靶作用模式。弹体材料的屈服强度和密度越高,界面驻留时间越短,弹体侵彻靶体的能力越强;陶瓷的屈服强度越高,界面击溃/驻留效应越显著,靶体的抗侵彻能力越强。考虑界面击溃/驻留效应的长杆弹侵彻装甲陶瓷理论模型揭示了部分界面击溃作用机理,可为陶瓷复合靶的设计提供参考。
  • 图  1  考虑界面击溃/驻留的长杆弹侵彻装甲陶瓷模型

    Figure  1.  A theoretical model of penetration process of ceramic subjected to projectile impact by considering interface defeat/dwell

    图  2  弹靶实物照片

    Figure  2.  Photos of projectile and target

    图  3  长杆弹撞击装甲陶瓷实验总体布局示意图

    Figure  3.  Experimental layout for the impact of a long-rod projectile into a ceramic armor plate

    图  4  装甲陶瓷界面被击溃后回收靶体表面的破坏情况

    Figure  4.  Surface damage of recovered armor ceramics after interface defeat

    图  5  锥形头部长杆弹以1 037 m/s的速度侵彻装甲陶瓷后回收的靶体

    Figure  5.  Recovered target after penetration of a cone-nosed long-rod projectile with the velocity of 1 037 m/s into ceramics

    图  6  剩余侵彻深度随撞击速度的变化

    Figure  6.  Residual penetration depth varied with impact velocity

    图  7  不同材料弹体界面击溃/侵彻过程结果对比

    Figure  7.  Comparison of interface defeat/penetration among projectiles with different materials

    图  8  不同陶瓷材料对应的界面击溃、侵彻特性与撞击速度的关系

    Figure  8.  Comparison of interface defeat/penetration between ceramics with different materials

    表  1  不同撞击速度弹体侵彻陶瓷后金属靶中剩余侵彻深度

    Table  1.   Residual depths of penetration in metal targets after penetration of long-rod projectiles with different velocities into ceramics

    弹体类型初始撞击速度/(m·s−1)剩余侵彻深度/mm
    柱形头部长杆弹 7320
    843 2.4
    97921.5
    1 08434.5
    锥形头部长杆弹 8770
    9760
    1 03717.5
    下载: 导出CSV

    表  2  长杆弹相关参数

    Table  2.   Material parameters of long-rod projectiles

    材料密度/(kg·m−3)体积模量/GPa压缩屈服强度/GPa来源
    19 300180文献[32]
    10 2202380.9文献[10]
    钨合金17 6002801.2
    下载: 导出CSV

    表  3  陶瓷相关参数

    Table  3.   Material parameters of ceramics

    材料密度/(kg·m−3)弹性模量/GPa泊松比压缩屈服强度/GPa来源
    SiC-N 3 200文献[32]
    SiC-F>3 150430 文献[33]
    SiC-B 3 215446 0.1612.2文献[13-14]
    SiC-1 3 220446*0.1710.4文献[10, 13]
    B4C 2 500432 0.1715.8文献[10, 34]
    SiC 3 150440 0.16
     注:*为弹性模量估算值。
    下载: 导出CSV

    表  4  背板材料参数

    Table  4.   Material parameters of back plate

    材料厚度/mm密度/(kg·m−3)拉伸强度/MPa弹性模量/GPa来源
    RHA 407 850900文献[33]
    Mar 350 24文献[13]
    45钢1007 830600200
    下载: 导出CSV

    表  5  界面击溃/侵彻转变速度的理论计算计算结果与实验结果

    Table  5.   Comparison between calculation and experimental results of transition velocity

    弹体类型界面击溃/侵彻转变速度/(m·s−1)转变速度误差/%
    实验理论
    柱形头部长杆弹 785±55860±60 9.5
    锥形头部长杆弹1 005±25920±70−8.5
    下载: 导出CSV

    表  6  界面击溃驻留时间与侵彻深度与实验对比

    Table  6.   Comparison between calculation and experimental results of penetration depth and dwell time

    撞击速度/(m·s−1)侵彻深度/mm侵彻深度误差/%驻留时间/μs
    实验理论
    7320061.0
    8432.42.3 −4.23.7
    97921.521.6 −0.50
    1 08434.530.7−11.00
    下载: 导出CSV

    表  7  侵彻速度理论值与实验结果[32]对比

    Table  7.   Comparison between calculation and experimental results[32] of penetration velocity

    撞击速度/(m·s−1)侵彻速度/(m·s−1)侵彻速度误差/%
    实验理论
    776±20 0
    958±4232±22207−10.3±8.4
    1 212±6482±40444 −7.6±8.0
    1 381±7598±43596 0.2±7.2
    下载: 导出CSV
  • [1] 谈梦婷, 张先锋, 包阔, 等. 装甲陶瓷的界面击溃效应 [J]. 力学进展, 2019, 49: 392–427. DOI: 10.6052/1000-0992-17-015.

    TAN M T, ZHANG X F, BAO K, et al. Interface defeat of ceramic armor [J]. Advances in Mechanics, 2019, 49: 392–427. DOI: 10.6052/1000-0992-17-015.
    [2] HAUVER G E, NETHERWOOD P H, BENCK R F, et al. Variation of target resistance during long-rod penetration into ceramics [C] // Proceedings of the 13th International Symposium on Ballistics. Stockholm: Stockholm International Fairs, 1992: 257−264.
    [3] ANDERSON Jr C E. Dwell and post-dwell penetration of long rods on borosilicate glass targets [J]. AIP Conference Proceedings, 2009, 1195(1): 1447–1452. DOI: 10.1063/1.3295084.
    [4] ANDERSON Jr C E, BEHNER T, HOLMQUIST T J, et al. Dwell, interface defeat, and penetration of long rods impacting silicon carbide: 18.12544/008 [R]. Warren, MI: Southwest Research Institute, 2009: 1−55.
    [5] ANDERSON Jr C E, HOLMQUIST T J, ORPHAL D L, et al. Dwell and interface defeat on borosilicate glass [J]. International Journal of Applied Ceramic Technology, 2010, 7(6): 776–786. DOI: 10.1111/j.1744-7402.2009.02478.x.
    [6] ANDERSON Jr C E, BEHNER T, HOLMQUIST T J, et al. Interface defeat of long rods impacting oblique silicon carbide [C] // Proceedings of the 26th International Symposium on Ballistics. Miami, FL, 2011: 1−36.
    [7] ANDERSON Jr C E, BEHNER T, HOLMQUIST T J, et al. Interface defeat of long rods impacting borosilicate glass [C] // Proceedings of the 23rd International Symposium on Ballistics. Tarragona, 2007, 2: 1049−1056.
    [8] HOLMQUIST T J, ANDERSON C E, BEHNER T, et al. Mechanics of dwell and post-dwell penetration [J]. Advances in Applied Ceramics, 2010, 109(8): 467–479. DOI: 10.1179/174367509X12535211569512.
    [9] LUNDBERG P. Interface defeat and penetration: two modes of interaction between metallic projectiles and ceramic targets [D]. Uppsala: Uppsala University, 2004: 13−36.
    [10] LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 259–275. DOI: 10.1016/s0734-743x(99)00152-9.
    [11] LUNDBERG P, RENSTROM R, HOLMBERG L. An experimental investigation of interface defeat at extended interaction time [C] // Proceedings of the 19th International Symposium on Ballistics. Interlaken: RUAG Land Systems, 2001, 3: 1463−1469.
    [12] LUNDBERG P, LUNDBERG B. Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials [J]. International Journal of Impact Engineering, 2005, 31(7): 781–792. DOI: 10.1016/j.ijimpeng.2004.06.003.
    [13] LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of conical tungsten projectiles on flat silicon carbide targets: transition from interface defeat to penetration [J]. International Journal of Impact Engineering, 2006, 32(11): 1842–1856. DOI: 10.1016/j.ijimpeng.2005.04.004.
    [14] LUNDBERG P, RENSTRÖM R, ANDERSON O. Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets [J]. Journal of Applied Mechanics, 2013, 80(3): 031804. DOI: 10.1115/1.4023345.
    [15] LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets [J]. Defence Technology, 2016, 12(3): 263–271. DOI: 10.1016/j.dt.2016.02.002.
    [16] ANDERSON Jr C E, WALKER J D. An analytical model for dwell and interface defeat [J]. International Journal of Impact Engineering, 2005, 31(9): 1119–1132. DOI: 10.1016/j.ijimpeng.2004.07.013.
    [17] 李继承, 陈小伟. 尖锥头长杆弹侵彻的界面击溃分析 [J]. 力学学报, 2011, 43(1): 63–70. DOI: 10.6052/0459-1879-2011-1-lxxb2009-782.

    LI J C, CHEN X W. Theoretical analysis on the interface defeat of a conical-nosed projectile penetration [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 63–70. DOI: 10.6052/0459-1879-2011-1-lxxb2009-782.
    [18] 李继承, 陈小伟. 柱形长杆弹侵彻的界面击溃分析 [J]. 爆炸与冲击, 2011, 31(2): 141–147. DOI: 10.11883/1001-1455(2011)02-0141-07.

    LI J C, CHEN X W. Theoretical analysis on the interface defeat of a long rod penetration [J]. Explosion and Shock Waves, 2011, 31(2): 141–147. DOI: 10.11883/1001-1455(2011)02-0141-07.
    [19] LI J C, CHEN X W, NING F. Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods [J]. International Journal of Protective Structures, 2014, 5(1): 21–46. DOI: 10.1260/2041-4196.5.1.21.
    [20] LI J C, CHEN X W, NING F, et al. On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets [J]. International Journal of Impact Engineering, 2015, 83: 37–46. DOI: 10.1016/j.ijimpeng.2015.04.003.
    [21] LI J C, CHEN X W. Theoretical analysis of projectile-target interface defeat and transition to penetration by long rods due to oblique impacts of ceramic targets [J]. International Journal of Impact Engineering, 2017, 106: 53–63. DOI: 10.1016/j.ijimpeng.2017.03.013.
    [22] LA SALVIA J C. A physically-based model for the effect of microstructure and mechanical properties on ballistic performance [C] // Proceedings of the 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. Chichester: The American Ceramic Society, 2002, 23(3): 213−220.
    [23] LA SALVIA J C. Recent progress on the influence of microstructure and mechanical properties on ballistic performance [J]. Ceramic Transactions, 2002, 134: 557–570.
    [24] LA SALVIA J C. A predictive model for the dwell/penetration transition phenomenon [C] // Proceeding of the 22nd International Symposium on Ballistics. Vancouver: National Defense Industrial Association, 2005: 717−725.
    [25] ZHANG X F, SERJOUEI A, SRIDHAR I. Criterion for interface defeat to penetration transition of long rod projectile impact on ceramic armor [J]. Thin-Walled Structures, 2018, 126: 266–284. DOI: 10.1016/j.tws.2017.04.016.
    [26] 谈梦婷, 张先锋, 葛贤坤, 等. 长杆弹撞击装甲陶瓷界面击溃/侵彻转变速度理论模型 [J]. 爆炸与冲击, 2017, 37(6): 1093–1100. DOI: 10.11883/1001-1455(2017)06-1093-08.

    TAN M T, ZHANG X F, GE X K, et al. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile [J]. Explosion and Shock Waves, 2017, 37(6): 1093–1100. DOI: 10.11883/1001-1455(2017)06-1093-08.
    [27] FELLOWS N A, BARTON P C. Development of impact model for ceramic-faced semi-infinite armour [J]. International Journal of Impact Engineering, 1999, 22(8): 793–811. DOI: 10.1016/S0734-743X(99)00017-2.
    [28] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.

    JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.
    [29] ZAERA R, SÁNCHEZ-GÁLVEZ V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours [J]. International Journal of Impact Engineering, 1998, 21(3): 133–148. DOI: 10.1016/S0734-743X(97)00035-3.
    [30] 兰彬. 长杆弹侵彻半无限靶的数值模拟和理论研究[D]. 合肥: 中国科学技术大学, 2008: 55−56.

    LAN B. A combined numerical and theoretical study of long rod penetration into semi-infinite targets [D]. Hefei: University of Science and Technology of China, 2008: 55−56.
    [31] EVANS A G, GULDEN M E, ROSENBLATT M. Impact damage in brittle materials in the elastic-plastic response régime [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1978, 361(1706): 343–365. DOI: 10.1098/rspa.1978.0106.
    [32] BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Interface defeat for unconfined SiC ceramics [C] // Proceedings of the 24th International Symposium on Ballistics. New Orleans, 2008, 2: 35−42.
    [33] BEHNER T, HEINE A, WICKERT M. Dwell and penetration of tungsten heavy alloy long-rod penetrators impacting unconfined finite-thickness silicon carbide ceramic targets [J]. International Journal of Impact Engineering, 2016, 95: 54–60. DOI: 10.1016/j.ijimpeng.2016.04.008.
    [34] HOLMQUIST T J, RAJENDRAN A M, TEMPLETON D W, et al. A ceramic armor material database: TARDECTR-13754 [R]. Warren, Michigan: US Army Tank Automotive Research, Development, and Engineering Center, 1999.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  272
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-10-15
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回