破片撞击下YAG透明陶瓷复合靶的破坏特性

包阔 张先锋 王桂吉 邓佳杰 韩丹 谈梦婷 魏海洋

包阔, 张先锋, 王桂吉, 邓佳杰, 韩丹, 谈梦婷, 魏海洋. 破片撞击下YAG透明陶瓷复合靶的破坏特性[J]. 爆炸与冲击, 2021, 41(3): 031402. doi: 10.11883/bzycj-2020-0339
引用本文: 包阔, 张先锋, 王桂吉, 邓佳杰, 韩丹, 谈梦婷, 魏海洋. 破片撞击下YAG透明陶瓷复合靶的破坏特性[J]. 爆炸与冲击, 2021, 41(3): 031402. doi: 10.11883/bzycj-2020-0339
BAO Kuo, ZHANG Xianfeng, WANG Guiji, DENG Jiajie, HAN Dan, TAN Mengting, WEI Haiyang. Fracture characteristics of YAG transparent ceramic composite targets subjected to impact of sphere fragments[J]. Explosion And Shock Waves, 2021, 41(3): 031402. doi: 10.11883/bzycj-2020-0339
Citation: BAO Kuo, ZHANG Xianfeng, WANG Guiji, DENG Jiajie, HAN Dan, TAN Mengting, WEI Haiyang. Fracture characteristics of YAG transparent ceramic composite targets subjected to impact of sphere fragments[J]. Explosion And Shock Waves, 2021, 41(3): 031402. doi: 10.11883/bzycj-2020-0339

破片撞击下YAG透明陶瓷复合靶的破坏特性

doi: 10.11883/bzycj-2020-0339
基金项目: 国家自然科学基金(11772159);高性能陶瓷和超微结构国家重点试验室开放基金(SKL201602SIC);江苏省研究生科研与实践创新计划项目(KYCX19_0335)
详细信息
    作者简介:

    包 阔(1994- ),男,博士研究生,183402539@qq.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O382; TJ410

Fracture characteristics of YAG transparent ceramic composite targets subjected to impact of sphere fragments

  • 摘要: YAG透明陶瓷兼具有优秀的透光性能和抗冲击破坏性能,是武器装备透明部分的优秀防护材料,在军事装备、航天等国防领域具有良好的应用前景。冲击载荷下材料的加载响应特性对掌握材料破坏机制至关重要,能为透明复合靶设计提供依据。为获得YAG透明陶瓷多层复合靶的冲击破坏特性,利用内径9 mm的气体驱动发射平台进行了碳化钨球形破片在20~310 m/s速度下撞击YAG透明陶瓷复合靶的实验,通过高速摄影捕捉的陶瓷表面损伤演化过程,计算了典型径向、环向裂纹扩展速度。通过观测回收的靶体和YAG碎片的宏细观破坏特征,分析了撞击速度与靶体破坏特征之间的联系。结果表明,YAG陶瓷层径向裂纹和环向裂纹扩展速度均随着时间的延长线性降低,且裂纹扩展速度几乎不受撞击速度影响。陶瓷层中心粉碎区面积随撞击速度的提高而增大,且中间玻璃层破坏区域面积与陶瓷锥底面积相关联,陶瓷锥角与撞击速度关联性不强。同时,观察到陶瓷层在冲击破坏过程中出现了裂纹簇,获得了裂纹簇数量与破片撞击速度之间的关系,分析了裂纹簇的特征及其成因。裂纹变向、应力波作用会显著影响细观断面破坏特征。径向、环向和锥裂纹中沿晶断裂的比例均随着裂纹扩展距离的增大而增加,且穿晶比例随着撞击速度的提高而增加。
  • 图  1  装配的YAG透明陶瓷复合靶结构

    Figure  1.  The structure of an assembled YAG transparent ceramic compsite target

    图  2  热腐蚀后YAG透明陶瓷的细观特征

    Figure  2.  Microcharacteristics of YAG transparent ceramic after thermal corrosion observed by scanning electron microscopy

    图  3  球形破片冲击YAG透明陶瓷复合靶实验布局

    Figure  3.  Experimental layout for impact of a YAG transparent ceramic composite target by a spherical fragment

    图  4  碳化钨破片表面磨蚀面积与撞击速度的关系

    Figure  4.  Erosion areas of spherical fragments at different impact velocities

    图  5  球形碳化钨破片磨蚀面积、回弹速度与撞击速度的关系

    Figure  5.  Relationships of rebound velocity and crash area of sphericl tungsten carbide fragment with impact velocity

    图  7  不同撞击速度下裂纹扩展距离随时间的演化

    Figure  7.  Evolution of crack propagation distance with time at different impact velocities

    图  8  不同撞击速度下裂纹扩展速度随时间的演化

    Figure  8.  Evolution of crack propagation velocity with time at different impact velocities

    图  9  冲击实验后回收的标记出正面陶瓷层裂纹的复合靶

    Figure  9.  Recovered composite targets marked with cracks in front ceramic layers after impact experiments

    图  10  归一化粉碎区中心面积及陶瓷半锥角随破片撞击速度的变化

    Figure  10.  Variation of normalized central crash area and crack cone angle of YAG ceramic with fragment impact velocity

    图  11  冲击实验后回收的标记出背面玻璃层裂纹的复合靶

    Figure  11.  Recovered composite targets marked with cracks in back glass layers after impact experiments

    图  12  裂纹簇特征数量随撞击速度的变化

    Figure  12.  Variation of number of crack crowns with impact velocity

    图  13  球形破片冲击实验中YAG陶瓷典型细观断面特征

    Figure  13.  Typical microscopic fracture characteristics of YAG ceramic in spherical fragment impact experiment

    图  14  不同情况下由于断面变向导致的沿晶向穿晶转变

    Figure  14.  Changes of intergranular and transgranular under three different conditions due to the turning of fracture surface

    图  15  锥裂纹断面特征

    Figure  15.  Classical microscope characteristics of cone cracks

    图  16  124 m/s撞击速度下,距撞击中心3种不同距离处的环向裂纹断面特征

    Figure  16.  Fracture surfaces of ring cracks at three different distances from the impact point under the impact velocity of 124 m/s

    图  17  124 m/s的撞击速度下,距撞击中心3个不同距离处的径向裂纹断面特征

    Figure  17.  Fracture surfaces of radial cracks at three different distances from the impact point under the impact velocity of 124 m/s

    图  18  不同冲击速度下,距离撞击点20.0 mm的径向裂纹断面特征

    Figure  18.  Fracture surfaces of radial cracks at 20.0 mm away from impact points under different impact velocities

    图  19  不同冲击速度下,距离撞击点26.0 mm的环向裂纹断面特征

    Figure  19.  Fracture surfaces of radial cracks at 26.0 mm away from impact points under different impact velocities

    图  20  不同冲击速度下,距离撞击点17.0 mm的锥裂纹断面特征

    Figure  20.  Intergranular and transgranular fracture surfaces of cone cracks at 17.0 mm away from impact points under different impact velocities

    表  1  球形破片冲击实验配置

    Table  1.   Experimental conditions of spherical fragment impact experiments

    序号YAG陶瓷层尺寸透过率/%雾度/%分辨率撞击速度/(m·s−1回弹速度/(m·s−1
    182.6 mm×70.3 mm×9.6 mm81.435.5091.820
    281.0 mm×70.1 mm×10.0 mm106
    381.6 mm×70.7 mm×10.0 mm74.022.7096.61244.13
    481.2 mm×70.2 mm×10.0 mm177
    580.7 mm×69.1 mm×9.9 mm75.17.9698.922112.12
    681.0 mm×70.0 mm×10.1 mm74.813.7097.623616.50
    780.8 mm×71.6 mm×10.0 mm73.611.4098.528123.20
    880.6 mm×71.6 mm×9.6 mm82.032.5091.931022.45
     注:表中“−”符号为未测量到数据。
    下载: 导出CSV
  • [1] STRASSBURGER E, HUNZINGER M, PATEL P, et al. Analysis of the fragmentation of AlON and spinel under ballistic impact [J]. Journal of Applied Mechanics, 2013, 80(3): 031807. DOI: 10.1115/1.4023573.
    [2] STRASSBURGER E, BAUER S. Analysis of the interaction of projectiles with ceramic targets by means of flash X-ray cinematography and optical methods [C] // Proceedings of the 41st International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings. The American Ceramic Society, 2018, 38(2): 205−219. DOI: 10.1002/9781119474678.ch20.
    [3] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.

    JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.
    [4] 谈梦婷, 张先锋, 包阔, 等. 装甲陶瓷的界面击溃效应 [J]. 力学进展, 2019, 49(1): 201905. DOI: 10.6052/1000-0992-17-015.

    TAN M T, ZHANG X F, BAO K, et al. Interface defeat of ceramic armor [J]. Advances in Mechanics, 2019, 49(1): 201905. DOI: 10.6052/1000-0992-17-015.
    [5] LA SALVIA J C, LEAVY R B, HOUSKAMP J R, et al. Ballistic impact damage observations in a hot-pressed boron carbide [J]. Ceramic Engineering & Science Proceedings, 2010, 30(5): 45–55. DOI: 10.1002/9780470584330.ch5.
    [6] LA SALVIA J C, NORMANDIA M J, MILLER H T, et al. Sphere Impact Induced Damage in Ceramics: I. Armor-Grade SiC and TiB2 [M] // Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites, January 23−28, 2005. Cocoa Beach: John Wiley & Sons, Ltd, 2008. DOI: 10.1002/9780470291276.ch20.
    [7] MCCAULEY J W, STRASSBURGER E, PATEL P, et al. Experimental observations on dynamic response of selected transparent armor materials [J]. Experimental Mechanics, 2013, 53(1): 3–29. DOI: 10.1007/s11340-012-9658-5.
    [8] LA SALVIA J C, NORMANDIA M J, MILLER H T, et al. Sphere impact induced damage in ceramics: II. Armor-Grade B4C and WC [M] // Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites, January 23−28, 2005. Cocoa Beach, Florida: John Wiley & Sons Inc., 2008. DOI: 10.1002/9780470291276.ch21.
    [9] MURRAY N H, BOURNE N K, ROSENBERG Z, et al. The spall strength of alumina ceramics [J]. Journal of Applied Physics, 1998, 84(2): 734–738. DOI: 10.1063/1.368130.
    [10] CHEN M W, MCCAULEY J W, DANDEKAR D P, et al. Dynamic plasticity and failure of high-purity alumina under shock loading [J]. Nature Materials, 2006, 5(8): 614–618. DOI: 10.1038/nmat1689.
    [11] BOURNE N K, GREEN W H, DANDEKAR D P. On the one-dimensional recovery and microstructural evaluation of shocked alumina [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2074): 3197–3212. DOI: 10.1098/rspa.2006.1713.
    [12] SUBHASH G, MAITI S, GEUBELLE, et al. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics [J]. Journal of the American Ceramic Society, 2008, 91(9): 2777–2791. DOI: 10.1111/j.1551-2916.2008.02624.x.
    [13] KWAN H Y, KOBAYASHI A S. Dynamic fracture responses of alumina and two ceramic composites [J]. Journal of the American Ceramic Society, 1990, 73(8): 2309–2315. DOI: 10.1111/j.1151-2916.1990.tb07593.x.
    [14] HANEY E J, SUBHASH G. Edge-on-impact response of a coarse-grained magnesium aluminate spinel rod [J]. International Journal of Impact Engineering, 2012, 40−41: 26–34. DOI: 10.1016/j.ijimpeng.2011.10.001.
    [15] JIANG W, CHENG X W, XIONG Z P, et al. Static and dynamic mechanical properties of Yttrium Aluminum Garnet (YAG) [J]. Ceramics International, 2019, 45(9): 12256–12263. DOI: 10.1016/j.ceramint.2019.03.136.
    [16] NEMAT-NASSER S, HORII H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B8): 6805–6821. DOI: 10.1029/JB087iB08p06805.
    [17] HORII H, NEMAT-NASSER S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B4): 3105–3125. DOI: 10.1029/JB090iB04p03105.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  721
  • HTML全文浏览量:  263
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-10-28
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回