A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials
-
摘要: 高速冲击表面处理过程中的应变率对金属材料的宏观力学性能和微观组织结构都具有重要影响。根据当前应变率效应的研究成果,从宏观与微观相结合的角度出发,综述了高速冲击表面处理过程中应变率对金属材料强度和塑性的影响规律,并重点阐述了不同应变率下金属材料内部微观组织结构的演变规律,主要包括晶粒结构、绝热剪切带、相变、位错组态和析出相以及变形孪晶等。此外,还分析了组织结构随应变率的演化和微观变形机制的转变对材料力学性能的强化和弱化机理。最后,对高速冲击表面处理梯度组织的变形特点进行了总结。提出了不同组织结构对材料性能影响的综合效应模型,以期为应变率效应的深入研究奠定基础。Abstract: The strain rate during the process of high speed impact surface treatments has a significant effect on the mechanical properties as well as the microstructures of metallic materials. In this paper, the effects of strain rate during the process of high speed impact surface treatments on the variation of both strength and ductility of metallic materials are reviewed from macroscopic and microscopic prospective based on the current research achievements. The emphases are concentrated on the microstructural evolution under various strain rates, including grain structures, adiabatic shear bands, phases, dislocation structures, precipitates and deformation twins. At relatively low strain rates, grains tend to be elongated with respect to the loading direction, and they may be refined when the strain increases to a certain extent. In comparison, with the increment of strain rates, the free path of dislocation motion is remarkably reduced so that grains can be further refined to consume the impact energy and dislocations are multiplied significantly. However, the relatively high strain rates may also bring about adiabatic temperature rise and frictional heat, which may give rise to dynamic recovery and recrystallization in some materials so that the dislocation density would in turn be reduced. Moreover, precipitates can be formed and they may interact with dislocations owing to the combined effects of high strain rates and temperature rise. When the strain rates increase to the extremely high level, the movement of dislocations may be inhibited and deformation twins can be triggered to coordinate the deformation. As a result, the strain rate effects are complicated phenomena which comprehensively affect the microstructural strengthening and softening effects. Based on these, the influences of both microstructural evolution and the transition of microscopic deformation mechanisms with strain rates on the enhancement and deterioration of mechanical properties are analyzed. Finally, the characteristics of deformation mechanisms of the gradient microstructures derived from high velocity impact surface treatments are concluded. Furthermore, a comprehensive model embodying the influences of different microstructures is proposed, which can provide a foundation for the further researches of strain rate effects.
-
利用超空泡现象可以大幅度减小水下运动物体的摩擦阻力,从而大大提高其航行速度。基于超空泡原理的高速射弹,利用其弹道末端的剩余动能可拦截鱼雷、击毁水雷和破除水下障碍等。20世纪末,在美国,机载快速灭雷系统(RAMICS)已经装备部队,超空泡射弹水下速度超过1 000 m/s。Y.D.Vlasenko[1]、Y.N.Savchenko[2]、I.N.Kirschner[3]开展的超空泡射弹实验水下运动速度分别达到1 300、1 350和1 549 m/s,已超过了水中声速1 450 m/s。目前,超空泡射弹还在进一步向高速方向发展[4-6]。在不考虑流体的压缩性效应时,Y.S.Chou[7]、S.S.Kulkarni等[8]、K.Ohtani等[9]对射弹超空泡流动和弹体运动特性进行了计算。由于射弹高速冲击导致的流体压缩性效应不容忽视,A.N.Varghese等[10]、A.D.Vasin[11-13]、V.V.Serebryakov等[4-6]基于细长体理论和渐近匹配展开法对超空泡形态影响的可压缩效应进行了理论研究,张志宏等[14-15]进一步拓展得到了亚、超声速条件下细长锥形射弹的超空泡形态二阶近似解,金永刚等[16]、张志宏等[17]建立了高速射弹超空泡流场的数值计算方法。
超声速超空泡射弹发射后在水下依靠惯性无动力飞行,其速度从超声速逐渐减至亚声速,期间需要经历压缩性效应显著的跨声速阶段。另外,超空泡射弹还需在变水深条件下运动,水深变化引起的重力效应(环境压力和空泡数的变化)也不容忽视。因而,需要综合分析流体压缩性和重力效应对高速射弹超空泡形态和流体动力特性的影响。文献[14-17]仅能反映流体压缩性效应对超空泡形态和流场的影响,没有反映流体的重力效应。本文中,针对高速细长锥形超空泡射弹的实际应用背景,综合计及流体的重力和压缩性效应影响,统一建立亚、超声速条件下超空泡流动的理论模型和数值计算方法,系统完整地解决高速射弹的超空泡形态、射弹表面压力分布和压差阻力系数等计算问题,拟为下一步超空泡射弹的弹型优化设计和水下弹道预报提供理论基础。
1. 数学问题
在细长锥形射弹底部建立柱坐标系(x, r),如图 1所示。设射弹绕流为理想可压缩流体无旋运动,来流速度为U∞。根据亚、超声速流动特点,假定亚声速时超空泡尾部采用Riabouchinsky闭合方式,超声速时则不需提供闭合方式。考虑重力对超空泡流动的影响,假定重力加速度g指向x轴负方向,当射弹沿x轴负方向运动时,对应于流体重力势能减小即垂直入水方向,反之为垂直出水方向。由于入水开空泡通大气的复杂性,本文中只考虑射弹在液体中的水平、垂直向下和向上的运动,不考虑气水交界面上的入水问题。射弹半径r=r1(x)=ε(x+l)预先给定,超空泡半径r=R(x)和长度L则需通过计算确定,其中l和Rn分别为射弹长度和底部半径,取小参数ε=Rn/l。
设高速射弹引起的流场扰动速度势为φ,则描述亚、超声速超空泡流动的数学问题是:
(1−Ma2∞)∂2φ∂x2+∂2φ∂r2+∂φr∂r=0Ma∞<1orMa∞>1 (1) ∂φ∂r=(U∞+∂φ∂x)drdxr=r1(x),r=R(x) (2) ∇φ→0(x,r)→∞ (3) r1=R,dr1dx=dRdxx=0 (4) 式中:Ma∞=U∞/a∞为无穷远处来流马赫数,a∞为无穷远处来流声速。
流体压力与密度关系采用Tait状态方程描述,即:
p+Bp∞+B=(ρρ∞)n (5) 式中:p∞、ρ∞为无穷远处来流压力和密度;p、ρ为流场中某点压力和密度;n=7.15;B=298 MPa。
计及重力效应的伯努利方程为:
nn−1p+Bρ+U22+gx=nn−1p∞+Bρ∞+U2∞2+gx∞ (6) 式中:x∞为重力场参考平面坐标,取x∞=0时对应于射弹底面的中心位置。
对细长锥形射弹,流场压力系数可导出:
Cp=p−p∞0.5ρ∞U2∞=2nMa2∞((1−n−12Ma2∞(2φxU∞+φ2rU2∞+2(x−x∞)Fr2Rn))nn−1−1) (7) 式中:傅鲁德数Fr=U∞/√gRn。
定义空化数为σ=p∞−pv0.5ρ∞U2∞,其中p∞=pa+ρgh,pa为当地大气压,pv为水的饱和蒸汽压,ρ为水的密度,h为水面距射弹底面中心的高度。在空泡边界0≤x≤L-l上,有Cp=-σ。
2. 积分-微分方程
根据亚、超声速流动特点,流场扰动速度势可分别写为:
φ(x,r)=−∫L−lq(ξ)dξ4π√(x−ξ)2+(mr)2Ma∞<1 (8) \varphi (x,r) = - \int_{ - l}^{x - mr} {\frac{{q(\xi ){\rm{d}}\xi }}{{2{\rm{ \mathsf{ π} }}\sqrt {{{(x - \xi )}^2} - {{(mr)}^2}} }}} \quad M{a_\infty } > 1 (9) 式中:m=\sqrt{\left|1-M a_{\infty}^{2}\right|} ; q(\xi)=U_{\infty}\left.\frac{\mathrm{d} S}{\mathrm{d} x}\right|_{x=\xi};S=πr2,为细长射弹及超空泡横截面面积。
利用式(2)和式(4),将式(8)、式(9)分别代入式(7),得到描述亚、超声速细长锥形射弹超空泡形态(0≤x≤L-l)的非线性积分-微分方程分别为:
\begin{array}{*{20}{c}} {\int_0^{L - l} {{{\left. {\frac{{{{\rm{d}}^2}\zeta }}{{{\rm{d}}{x^2}}}} \right|}_{x = \xi }}} \frac{{{\rm{d}}\xi }}{{\sqrt {{{(x - \xi )}^2} + {m^2}\zeta } }} = - 2{\sigma _m} + \frac{{4\left( {x - {x_\infty }} \right)}}{{F{r^2}{R_n}}} + \frac{1}{{2\zeta }}{{\left( {\frac{{{\rm{d}}\zeta }}{{{\rm{d}}x}}} \right)}^2} - }\\ {2{\varepsilon ^2}\ln \frac{{\left( {x + l + \sqrt {{{(x + l)}^2} + {m^2}\zeta } } \right)\left( {x - L + l + \sqrt {{{(x - L + l)}^2} + {m^2}\zeta } } \right)}}{{\left( {x + \sqrt {{x^2} + {m^2}\zeta } } \right)\left( {x - L + \sqrt {{{(x - L)}^2} + {m^2}\zeta } } \right)}}\quad M{a_\infty } < 1} \end{array} (10) \begin{array}{*{20}{c}} {\int_0^{x - mR} {{{\left. {\frac{{{d^2}\zeta }}{{d{x^2}}}} \right|}_{x = \hat \xi }}} \frac{1}{{{{\left( {{{(x - \xi )}^2} - {m^2}\zeta } \right)}^{1/2}}}}{\rm{d}}\xi = }\\ { - {\sigma _m} + \frac{{2\left( {x - {x_\infty }} \right)}}{{F{r^2}{R_n}}} + \frac{1}{{4\zeta }}{{\left( {\frac{{{\rm{d}}\zeta }}{{{\rm{d}}x}}} \right)}^2} - 2{\varepsilon ^2}\ln \frac{{x + l + \sqrt {{{(x + l)}^2} - {m^2}\zeta } }}{{x + \sqrt {{x^2} - {m^2}\zeta } }}\quad M{a_\infty } > 1} \end{array} (11) 式中: \zeta=R^{2}, \sigma_{m}=\frac{2}{(n-1) M a_{\infty}^{2}}\left(1-\left(1-\frac{n M a_{\infty}^{2}}{2} \sigma\right)^{\frac{n-1}{n}}\right)。
3. 离散及迭代方法
求解超空泡形态,可将超空泡沿长度方向均匀分成N段,有N+1个节点,且x1=0,xN+1=L-l。设ζ在每段的相邻两节点之间按x(xi≤x≤xi+1)的二次多项式变化,即:
\zeta = {\zeta _i} + {a_i}\left( {x - {x_i}} \right) + {b_i}{\left( {x - {x_i}} \right)^2}\quad i = 1,2, \cdots ,N (12) 式中:ai和bi是待定系数。
利用式(4)及dζ/dx在各节点处连续的条件,得a1=2εRn以及ai+1的递推公式为:
{a_{i + 1}} = {a_i} + 2{b_i}\left( {{x_{i + 1}} - {x_i}} \right)\quad i = 1,2, \cdots ,N (13) 利用式(12),可得计算各节点xk处超空泡ζk的累加表达式为:
{\zeta _k} = {\zeta _1} + \sum\limits_{i = 1}^{k - 1} {\left( {{a_i}\left( {{x_{i + 1}} - {x_i}} \right) + {b_i}{{\left( {{x_{i + 1}} - {x_i}} \right)}^2}} \right)} \quad k = 2,3, \cdots ,N + 1 (14) 系数bi(i=1, 2, …, N)的确定成为超空泡形态计算的关键。在亚、超声速条件下,将式(12)分别代入式(10)和式(11),得到求解bi的线性代数方程组和递推公式分别为:
\begin{array}{l} \sum\limits_{i = 1}^N {{b_i}} \ln \frac{{{x_k} - {x_{i + 1}} + \sqrt {{{\left( {{x_k} - {x_{i + 1}}} \right)}^2} + {m^2}{\zeta _k}} }}{{{x_k} - {x_i} + \sqrt {{{\left( {{x_k} - {x_i}} \right)}^2} + {m^2}{\zeta _k}} }} = {\sigma _m} - \frac{{2\left( {{x_k} - {x_\infty }} \right)}}{{F{r^2}{R_n}}} - \frac{1}{{4{\zeta _k}}}{\left( {{{\left. {\frac{{{\rm{d}}\zeta }}{{{\rm{d}}x}}} \right|}_{x = {x_k}}}} \right)^2} + \\ \;\;\;\;{\varepsilon ^2}\ln \frac{{\left( {{x_k} + l + \sqrt {{{\left( {{x_k} + l} \right)}^2} + {m^2}{\zeta _k}} } \right)\left( {{x_k} - L + l + \sqrt {{{\left( {{x_k} - L + l} \right)}^2} + {m^2}{\zeta _k}} } \right)}}{{\left( {{x_k} + \sqrt {x_k^2 + {m^2}{\zeta _k}} } \right)\left( {{x_k} - L + \sqrt {{{\left( {x_k^2 - L} \right)}^2} + {m^2}{\zeta _k}} } \right)}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;k = 1,2, \cdots ,N,M{a_\infty } < 1 \end{array} (15) \begin{array}{*{20}{c}} {{b_i}\ln \frac{{{m^2}{\zeta _{i + 1}}}}{{{{\left( {{x_{i + 1}} - {x_i} + \sqrt {{{\left( {{x_{i + 1}} - {x_i}} \right)}^2} - {m^2}{\zeta _{i + 1}}} } \right)}^2}}} = {\sigma _m} - \frac{{2\left( {{x_{i + 1}} - {x_\infty }} \right)}}{{F{r^2}{R_n}}} - \frac{1}{{4{\zeta _{i + 1}}}}{{\left( {{{\left. {\frac{{d\zeta }}{{dx}}} \right|}_{x = {x_{i + 1}}}}} \right)}^2} + }\\ {2{\varepsilon ^2}\ln \frac{{{x_{i + 1}} + l + \sqrt {{{\left( {{x_{i + 1}} + l} \right)}^2} - {m^2}{\zeta _{i + 1}}} }}{{{x_{i + 1}} + \sqrt {x_{i + 1}^2 - {m^2}{\zeta _{i + 1}}} }} - }\\ {2{\mathop{\rm sgn}} (i - 1)\sum\limits_{j = 1}^{i - 1} {{b_j}} \ln \frac{{{x_{i + 1}} - {x_{j + 1}} + \sqrt {{{\left( {{x_{i + 1}} - {x_{j + 1}}} \right)}^2} - {m^2}{\zeta _{i + 1}}} }}{{{x_{i + 1}} - {x_j} + \sqrt {{{\left( {{x_{i + 1}} - {x_j}} \right)}^2} - {m^2}{\zeta _{i + 1}}} }}\quad i = 1,2, \cdots ,N,M{a_\infty } > 1} \end{array} (16) 式中:ζk=Rk2,ζi+1=Ri+12。
在已知射弹几何参数和运动参数条件下,采用超空泡形态的一阶近似解[13-15]作为初解,可以加快计算的收敛速度。超空泡最终长度及外形由\left.\zeta\right|_{x=L-l}=R_{n}^{2}确定[16-17]。根据计算得到的超空泡形态,利用式(8)或式(9)以及式(7),可以计算得到超空泡流动的速度场和压力场。而亚、超声速条件下细长锥形射弹表面上(-l≤x≤0)的压力系数分别为:
\begin{array}{l} {C_p} = \frac{2}{{nMa_\infty ^2}}\left( {\left( {1 - \frac{{n - 1}}{2}Ma_\infty ^2\left( {\sum\limits_{i = 1}^N {{b_i}} \ln \frac{{x - {x_{i + 1}} + \sqrt {{{\left( {x - {x_{i + 1}}} \right)}^2} + {m^2}{\zeta _b}} }}{{x - {x_i} + \sqrt {{{\left( {x - {x_i}} \right)}^2} + {m^2}{\zeta _b}} }} + } \right.} \right.} \right.\\ \left. {{{\left. {\left. {{\varepsilon ^2}\ln \frac{{{\rm{e}}\left( {x + \sqrt {{x^2} + {m^2}{\zeta _b}} } \right)\left( {x - L + \sqrt {{{(x - L)}^2} + {m^2}{\zeta _b}} } \right)}}{{\left( {x + l + \sqrt {{{(x + l)}^2} + {m^2}{\zeta _b}} } \right)\left( {x - L + l + \sqrt {{{(x - L + l)}^2} + {m^2}{\zeta _b}} } \right)}} + \frac{{2\left( {x - {x_\infty }} \right)}}{{F{r^2}{R_n}}}} \right)} \right)}^{\frac{n}{{n - 1}}}} - 1} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;M{a_\infty } < 1 \end{array} (17) {C_p} = \frac{2}{{nMa_\infty ^2}}\left( {{{\left( {1 - \frac{{n - 1}}{2}Ma_\infty ^2\left( {{\varepsilon ^2}\ln \frac{{{\mathop{\rm e}\nolimits} {m^2}{\varepsilon ^2}}}{{{{\left( {1 + \sqrt {1 - {m^2}{\varepsilon ^2}} } \right)}^2}}} + \frac{{2\left( {x - {x_\infty }} \right)}}{{F{r^2}{R_n}}}} \right)} \right)}^{\frac{n}{{n - 1}}}} - 1} \right)\quad M{a_\infty } > 1 (18) 式中:ζb=r12=ε2(x+l)2。
通过积分,可以进一步得到以πRn2为特征面积的细长锥形射弹压差阻力系数为[7, 10]:
{C_D} = \frac{D}{{0.5{\rho _\infty }U_\infty ^2{\rm{ \mathsf{ π} }}R_n^2}} = \frac{2}{{{l^2}}}\int_{ - l}^0 {(x + l)} {C_p}{\rm{d}}x + \sigma (19) 式中:D为射弹的压差阻力。
4. 结果与分析
取射弹几何参数为:l=120 mm,Rn=6 mm,ε=0.05。由文献[4-6],超空泡长细比λ的渐近解为:
\sigma = \frac{2}{{{\lambda ^2}}}\ln \frac{\lambda }{{m\sqrt {\rm{e}} }} (20) 在已知射弹运动速度时,可以计算来流马赫数Ma∞和空化数σ,通过式(10)或式(11)和式(14),可以计算亚声速或超声速条件下细长锥形射弹的超空泡形态,并进一步得到超空泡长细比与马赫数的变化关系。不同深度射弹水平运动时超空泡长细比的渐近解与数值解结果比较如图 2所示,两者整体上符合较好,验证了本文理论模型和数值解法的正确性。在大部分情况下,λ随Ma∞基本呈线性变化,即随Ma∞增加超空泡形态将变得更加细长。但在跨声速(0.8 < Ma∞ < 1.2)时,曲线将会出现一个窄的尖峰,此时λ随Ma∞呈非线性变化。在Ma∞相同时,不计重力效应的超空泡长细比最大(这里可视为水深为零),随着水深增加(如h=20, 40 m),λ将逐渐减小,说明水深增加将使超空泡向短粗方向发展。
在射弹深度和速度恒定(如h=20 m,Ma∞=0.7, 1.2)时,计算射弹水平及出、入水运动的超空泡形态。当射弹水平运动(对应于Fr→∞)时,计算得到的超空泡形态在亚声速时前后对称,在超声速时前后稍微不对称,主要原因是:亚声速时扰动可向流场四周传播,而超声速时扰动仅在马赫锥内向下游传播。在射弹垂直入水(对应于Fr2>0)或垂直出水(因射弹运动方向与重力加速度g方向相反,对应于Fr2 < 0)时,由于重力效应的影响,推迟或加速了超空泡尾部的封闭,使超空泡的长度拉长或缩短,如图 3所示。射弹出入水时重力效应主要影响超空泡的尾部形态,并使超空泡前后呈现不对称。
另外,重力效应并不完全体现在Fr数的大小上,由式(10)和式(11)可以看出,它同时还与超空泡的尺度坐标x有关。计算分析表明,当射弹沿水平方向或沿垂直出水方向运动时,超空泡尾部可以自然封闭,因而可以得到超空泡形态的收敛解。当射弹沿垂直入水方向运动时,由于超空泡长度随Ma∞增加而增加,当Ma∞过大导致超空泡长度过长而入水深度不足时,由于超空泡来不及封闭,则无法满足超空泡尾部的闭合准则,理论计算将得不到收敛的超空泡形态数值解。
重力效应对超空泡尺度的影响还与水深大小有关,如图 4所示。图中纵坐标Lu/Lh、Ru/Rh分别为射弹出水和水平运动的超空泡长度和最大半径之比。在水深较小(如水深为零)时,超空泡尺度受重力效应的影响较大,且随Ma∞的增加而增加。相对于射弹水平运动的超空泡尺度,射弹出水时超空泡长度比半径减小得更快,即在同样的Ma∞下,Lu/Lh偏离1的位置比Ru/Rh大。当水深增加(如h=20 m)时,Lu/Lh和Ru/Rh偏离1的位置减小。说明水深较大时,射弹出水时的超空泡尺度受重力效应的影响相对减小,即更加接近于射弹水平运动时的超空泡尺度。因此,水深越大,无论射弹是水平运动还是垂向运动,他们的超空泡尺度大小就越接近,重力效应对射弹不同运动方式形成的超空泡尺度的影响就越小。
在射弹速度恒定时,进一步计算水深变化对射弹出水超空泡形态的影响。当射弹沿垂直方向(垂直向下或垂直向上)运动时,其超空泡在垂向将遭受不同的重力作用。图 5为射弹以速度Ma∞=0.7垂直出水的超空泡形态,水深h分别为10、20、30、40 m。可见,随着水深增加,超空泡长度和半径将依次缩小,但缩小的趋势逐渐减缓。
当射弹沿水平方向运动时,由于不同深度条件下空化数不同,也将导致所形成的超空泡尺度不同。当射弹以亚声速Ma∞=0.8和超声速Ma∞=1.2作水平运动时,深度增加将使超空泡长度和最大半径相应缩小。水深小时减小得快,水深大时减小得慢,如图 6所示。说明水深较小时,超空泡尺度对深度变化比较敏感,而水深较大时,深度变化对超空泡尺度的影响较小。
考虑重力和压缩性效应, 计算射弹表面压力分布和压差阻力系数随马赫数的变化关系。在水深一定(如h=20 m)时,Ma∞的变化对射弹表面压力分布有较大影响,射弹表面的压力系数在锥尖处为驻点压力,亚声速时由锥尖至锥底逐渐减小,在锥底处压力系数减小为各自水深和速度下的负空化数,如图 7所示。当Ma∞由0.3增加至0.7时,压力系数增加较慢,当Ma∞由0.7增加至0.9时,压力系数增加较快,而当Ma∞由0.9增加至0.99时,压力系数则急剧增加。Ma∞的变化反映了流体压缩性效应的影响。
超声速条件下,由式(18)可知,相同速度时射弹表面压力系数与水深无关。由于超声速时Fr很大,而射弹尺度又很小,因此无论射弹是水平运动还是出水或入水运动,射弹表面的压力系数将基本保持不变,且近似为常数。
射弹的压差阻力系数与其表面的压力系数和空化数的大小有关。通过射弹表面的压力系数分布,可以定性反映射弹运动的压差阻力系数大小。在亚声速时,压差阻力系数随水深增加有明显增加,主要是由水深变化导致的空化数增加而引起的,如图 8所示。在超声速时,由于射弹速度大,水深增加引起的空化数变化小,不同水深、相同速度时射弹表面的压力系数分布基本保持不变,因而压差阻力系数与水深变化关系不大。因此,在亚声速时流体重力效应对压差阻力系数的影响较大,而在超声速时则影响较小。
在0.8 < Ma∞ < 1.2时,压差阻力系数增加迅速,主要是流体的压缩性效应导致射弹表面压力系数迅速增加造成的。此外,流体的压缩性效应还体现在对超空泡尺度的改变上。图 9为射弹在3种深度(h=0, 20, 40 m)水平运动时的可压与不可压超空泡流动的参数之比,其中L/L0、R/R0、CD/CD0分别为超空泡长度之比、超空泡最大半径之比、射弹压差阻力系数之比。当Ma∞→1时,有L/L0>1.7、R/R0>1.4、CD/CD0>1.8,说明流体压缩性效应在跨声速范围内影响明显。当Ma∞ < 0.3和Ma∞→2时,可压与不可压超空泡流动的参数之比趋于1,说明此时流体的压缩性效应较小。对Ma∞>2的高超声速情况,流体压缩性效应将随Ma∞增加而增加。因此可知,射弹运动速度范围不同,导致的流体压缩性效应影响也不同,如果在理论模型中不考虑流体的压缩性效应,计算结果将会引起较大误差。
5. 结论
建立的亚、超声速细长锥形射弹超空泡流动的理论模型和计算方法,考虑了流体的压缩性特别是重力效应,可以计算细长锥形射弹运动方式、深度、速度的变化对超空泡形态和流体动力系数的影响。对细长锥形射弹垂直出入水运动,流体重力效应主要体现在沿深度方向空泡周围的压力改变上。对细长锥形射弹水平运动,流体重力效应主要体现在水深变化导致的空泡数改变上。亚声速时,流体重力效应对细长锥形射弹压差阻力系数有明显影响,而超声速时影响较小。流体压缩性效应对超空泡形态、细长锥形射弹表面压力分布和射弹压差阻力系数的影响主要体现在跨临界速度和高超声速范围内。由于理论模型中未计及跨声速时的非线性效应影响,因而在跨声速范围时计算结果只能定性反映超空泡射弹的流动特性变化。
-
-
[1] BOBBILI R, RAMAKRISHNA B, MADHU V, et al. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures [J]. Defence Technology, 2015, 11(1): 93–98. DOI: 10.1016/j.dt.2014.08.004. [2] PRAKASH G, SINGH N K, GUPTA N K. Deformation behaviours of Al2014-T6 at different strain rates and temperatures [J]. Structures, 2020, 26: 193–203. DOI: 10.1016/j.istruc.2020.03.068. [3] GRACIO J J, BARLAT F, RAUCH E, et al. A review of the relationship between microstructural features and the stress-strain behavior of metals [J]. Materialwissenschaft und Werkstofftechnik, 2005, 36(10): 572–577. DOI: 10.1002/mawe.200500916. [4] MIKHAYLOVSKAYA A, YAKOVTSEVA O, SITKINA M, et al. Grain-boundary and intragranular deformation in ultrafine-grained aluminum-based alloy at high strain rate [J]. Materials Letters, 2020, 276: 128242. DOI: 10.1016/j.matlet.2020.128242. [5] 惠旭龙, 白春玉, 刘小川, 等. 宽应变率范围下2A16-T4铝合金动态力学性能 [J]. 爆炸与冲击, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.HUI X L, BAI C Y, LIU X C, et al. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates [J]. Explosion and Shock Waves, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08. [6] 惠旭龙, 白春玉, 葛宇静, 等. 2A16铝合金中应变率力学性能研究 [J]. 振动与冲击, 2017, 36(19): 66–70. DOI: 10.13465/j.cnki.jvs.2017.19.010.HUI X L, BAI C Y, GE Y J, et al. Dynamic properties of 2A16 aluminum alloy under intermediate strain rate [J]. Journal of Vibration and Shock, 2017, 36(19): 66–70. DOI: 10.13465/j.cnki.jvs.2017.19.010. [7] EL-ATY A A, XU Y, ZHANG S H, et al. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy [J]. Journal of Advanced Research, 2019, 18: 19–37. DOI: 10.1016/j.jare.2019.01.012. [8] ANDRADE U R, MEYERS M A, CHOKSHI A H. Constitutive description of work- and shock-hardened copper [J]. Scripta Metallurgica et Materialia, 1994, 30(7): 933–938. DOI: 10.1016/0956-716X(94)90418-9. [9] JOHNSON G R, HOLMQUIST T J. Evaluation of cylinder-impact test data for constitutive model constants [J]. Journal of Applied Physics, 1988, 64(8): 3901–3910. DOI: 10.1063/1.341344. [10] RULE W K, JONES S E. A revised form for the Johnson−Cook strength model [J]. International Journal of Impact Engineering, 1998, 21(8): 609–624. DOI: 10.1016/S0734-743X(97)00081-X. [11] 高宁, 朱志武. 铝合金应变率效应综述及其机理研究 [J]. 应用数学和力学, 2014, 35(S1): 208–212.GAO N, ZHU Z W. Study on the strain rate effects and mechanisms for aluminum alloys [J]. Applied Mathematics and Mechanics, 2014, 35(S1): 208–212. [12] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024. [13] JIAO M Y, MA L F, JIA W T, et al. A new phenomenological model describing the compressive thermal deformation flow stress of cast-rolled AZ31B Mg alloy [J]. Materials Research Express, 2019, 6(9): 096597. DOI: 10.1088/2053-1591/ab30ae. [14] ZERILLI F J, ARMSTRONG R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J]. Journal of Applied Physics, 1990, 68(4): 1580–1591. DOI: 10.1063/1.346636. [15] ZERILLI F J, ARMSTRONG R W. The effect of dislocation drag on the stress-strain behavior of FCC metals [J]. Acta Metallurgica et Materialia, 1992, 40(8): 1803–1808. DOI: 10.1016/0956-7151(92)90166-C. [16] 马鸣图, 李洁, 赵岩, 等. 汽车用金属材料在高应变速率下响应特性的研究进展 [J]. 机械工程材料, 2017, 41(9): 1–13, 24. DOI: 10.11973/jxgccl201709001.MA M T, LI J, ZHAO Y, et al. Research progress of response characteristics of metallic materials for automotive under high strain rates [J]. Materials for Mechanical Engineering, 2017, 41(9): 1–13, 24. DOI: 10.11973/jxgccl201709001. [17] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-j2009-144.ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-j2009-144. [18] 卢泓昱, 刘志奇, 宋建丽, 等. 花键冷敲成形本构关系研究 [J]. 太原科技大学学报, 2015, 36(3): 184–189. DOI: 10.3969/j.issn.1673-2057.2015.03.005.LU H Y, LIU Z Q, SONG J L, et al. Study of constitutive relation in cold rolling spline [J]. Journal of Taiyuan University of Science and Technology, 2015, 36(3): 184–189. DOI: 10.3969/j.issn.1673-2057.2015.03.005. [19] KIM J B, SHIN H. Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature [J]. International Journal of Impact Engineering, 2009, 36(5): 746–753. DOI: 10.1016/j.ijimpeng.2008.11.003. [20] 刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述 [J]. 力学进展, 2007, 37(3): 361–374. DOI: 10.6052/1000-0992-2007-3-J2006-184.LIU X H, HUANG X C, CHEN Y Z, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading [J]. Advances in Mechanics, 2007, 37(3): 361–374. DOI: 10.6052/1000-0992-2007-3-J2006-184. [21] HATAMLEH O. The effects of laser peening and shot peening on mechanical properties in friction stir welded 7075-T7351 aluminum [J]. Journal of Materials Engineering and Performance, 2008, 17(5): 688–694. DOI: 10.1007/s11665-007-9163-7. [22] KHUN N W, TRUNG P Q, BUTLER D L. Mechanical and tribological properties of shot-peened SAE 1070 steel [J]. Tribology Transactions, 2016, 59(5): 932–943. DOI: 10.1080/10402004.2015.1121313. [23] CHEN A Y, JIA Y Q, PAN D, et al. Reinforcement of laser-welded stainless steels by surface mechanical attrition treatment [J]. Materials Science and Engineering: A, 2013, 571: 161–166. DOI: 10.1016/j.msea.2013.02.018. [24] 韩梅, 喻健, 李嘉荣, 等. 喷丸对DD6单晶高温合金拉伸性能的影响 [J]. 材料工程, 2019, 47(8): 169–175. DOI: 10.11868/j.issn.1001-4381.2019.000191.HAN M, YU J, LI J R, et al. Influence of shot peening on tensile properties of DD6 single crystal superalloy [J]. Journal of Materials Engineering, 2019, 47(8): 169–175. DOI: 10.11868/j.issn.1001-4381.2019.000191. [25] 朱敏, 吴桂林, 李玉胜, 等. 旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能 [J]. 材料导报, 2018, 32(10): 1645–1649, 1662. DOI: 10.11896/j.issn.1005-023X.2018.10.014.ZHU M, WU G L, LI Y S, et al. Microstructure and mechanical properties of 18CrNiMo7-6 steel processed by rotationally accelerated shot peening [J]. Materials Reports, 2018, 32(10): 1645–1649, 1662. DOI: 10.11896/j.issn.1005-023X.2018.10.014. [26] KUMAR S, RAO G S, CHATTOPADHYAY K, et al. Effect of surface nanostructure on tensile behavior of superalloy IN718 [J]. Materials & Design, 2014, 62: 76–82. DOI: 10.1016/j.matdes.2014.04.084. [27] YANG C, LIU Y G, SHI Y H, et al. Microstructure characterization and tensile properties of processed TC17 via high energy shot peening [J]. Materials Science and Engineering: A, 2020, 784: 139298. DOI: 10.1016/j.msea.2020.139298. [28] ZHOU W F, REN X D, YANG Y, et al. Tensile behavior of nickel with gradient microstructure produced by laser shock peening [J]. Materials Science and Engineering: A, 2020, 771: 138603. DOI: 10.1016/j.msea.2019.138603. [29] LU K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455–1456. DOI: 10.1126/science.1255940. [30] WU X L, JIANG P, CHEN L, et al. Synergetic strengthening by gradient structure [J]. Materials Research Letters, 2014, 2(4): 185–191. DOI: 10.1080/21663831.2014.935821. [31] YANG X C, MA X L, MOERING J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper [J]. Materials Science and Engineering: A, 2015, 645: 280–285. DOI: 10.1016/j.msea.2015.08.037. [32] 高玉魁. 表面完整性理论与应用[M]. 北京: 化学工业出版社, 2014: 4−9. [33] FENG X, SUN Y P, ZHOU S P, et al. Influence of strain rate on microstructures and mechanical properties of 2524Al alloy fabricated by a novel large strain rolling [J]. Materials Research Express, 2020, 7(2): 026519. DOI: 10.1088/2053-1591/ab70e0. [34] ZHANG S W, ZHANG D W, WANG Y F, et al. The planetary rolling process of forming the internal thread [J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7-8): 3543–3551. DOI: 10.1007/s00170-020-05289-8. [35] 高玉魁, 柳鸿飞. 低塑性抛光技术对材料表面完整性影响的研究进展 [J]. 航空制造技术, 2019, 62(18): 14–22. DOI: 10.16080/j.issn1671-833x.2019.18.014.GAO Y K, LIU H F. Research progress of low plasticity burnishing on surface integrity of materials [J]. Aeronautical Manufacturing Technology, 2019, 62(18): 14–22. DOI: 10.16080/j.issn1671-833x.2019.18.014. [36] 孟丽君. 应变速率对强塑性变形晶粒细化的影响[D]. 太原: 太原理工大学, 2006: 27−43. [37] LI Y S, LI L Z, NIE J F, et al. Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures [J]. Journal of Materials Research, 2017, 32(23): 4443–4451. DOI: 10.1557/jmr.2017.310. [38] LIU W B, JIN X, ZHANG B, et al. A coupled EBSD/TEM analysis of the microstructure evolution of a gradient nanostructured ferritic/martensitic steel subjected to surface mechanical attrition treatment [J]. Materials, 2019, 12(1): 140. DOI: 10.3390/ma12010140. [39] YANG Y, ZHANG H, QIAO H C. Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing [J]. Journal of Alloys and Compounds, 2017, 722: 509–516. DOI: 10.1016/j.jallcom.2017.06.127. [40] ZHANG X D, HANSEN N, GAO Y K, et al. Hall-Petch and dislocation strengthening in graded nanostructured steel [J]. Acta Materialia, 2012, 60(16): 5933–5943. DOI: 10.1016/j.actamat.2012.07.037. [41] CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. DOI: 10.1126/science.1083727. [42] XIAO X D, SUN Y, YANG Z C, et al. Dynamic response of target with different peening media [J]. Surface Engineering, 2020, 36(4): 386–396. DOI: 10.1080/02670844.2019.1624302. [43] GURAO N P, KAPOOR R, SUWAS S. Texture evolution in high strain rate deformed Cu-10Zn alloy [J]. Materials Science and Engineering: A, 2012, 558: 761–765. DOI: 10.1016/j.msea.2012.07.112. [44] PANDEY A, KHAN A S, KIM E Y, et al. Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates [J]. International Journal of Plasticity, 2013, 41: 165–188. DOI: 10.1016/j.ijplas.2012.09.006. [45] CANOVA G R, FRESSENGEAS C, MOLINARI A, et al. Effect of rate sensitivity on slip system activity and lattice rotation [J]. Acta Metallurgica, 1988, 36(8): 1961–1970. DOI: 10.1016/0001-6160(88)90298-2. [46] TAO X F, GAO Y K, KANG J M, et al. Softening effects induced by shot peening for an aluminum-lithium alloy [J]. Metallurgical and Materials Transactions A, 2020, 51(1): 410–418. DOI: 10.1007/s11661-019-05506-4. [47] 邹途祥. 纯铝的晶粒细化机制及动态力学性能的研究[D]. 太原: 太原理工大学, 2008: 63. [48] HEMKER K J. Understanding how nanocrystalline metals deform [J]. Science, 2004, 304(5668): 221–223. DOI: 10.1126/science.1097058. [49] SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. DOI: 10.1126/science.1086636. [50] YANG C F, PAN J H, LEE T H. Work-softening and anneal-hardening behaviors in fine-grained Zn-Al alloys [J]. Journal of Alloys and Compounds, 2009, 468(1–2): 230–236. DOI: 10.1016/j.jallcom.2008.01.067. [51] ZHANG W L, HE L J, LU Z G, et al. Microstructural characteristics and formation mechanism of adiabatic shear bands in Al-Zn-Mg-Cu alloy under dynamic shear loading [J]. Materials Science and Engineering: A, 2020, 791: 139430. DOI: 10.1016/j.msea.2020.139430. [52] KHAN M A, WANG Y W, YASIN G, et al. Adiabatic shear band localization in an Al-Zn-Mg-Cu alloy under high strain rate compression [J]. Journal of Materials Research and Technology, 2020, 9(3): 3977–3983. DOI: 10.1016/j.jmrt.2020.02.024. [53] NIE Y, CLAUS B, GAO J, et al. In situ observation of adiabatic shear band formation in aluminum alloys [J]. Experimental Mechanics, 2020, 60(2): 153–163. DOI: 10.1007/s11340-019-00544-w. [54] OWOLABI G M, ODESHI A G, SINGH M N K, et al. Dynamic shear band formation in aluminum 6061-T6 and aluminum 6061-T6/Al2O3 composites [J]. Materials Science and Engineering: A, 2007, 457(1-2): 114–119. DOI: 10.1016/j.msea.2006.12.034. [55] XIONG Y Y, LI N, JIANG H W, et al. Microstructural Evolutions of AA7055 aluminum alloy under dynamic and quasi-static compressions [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 272–278. DOI: 10.1007/s40195-014-0041-7. [56] 王礼立. 冲击载荷下的材料动态失稳和动态屈服 [J]. 力学学报, 1989, 21(S1): 142–147. DOI: 10.6052/0459-1879-1989-s1-1989-249.WANG L L. The dynamic instability and dynamic yield of materials under impact loading [J]. Acta Mechanica Sinica, 1989, 21(S1): 142–147. DOI: 10.6052/0459-1879-1989-s1-1989-249. [57] 高玉魁. 冲击强化对304奥氏体不锈钢拉伸性能的影响 [J]. 材料工程, 2014(8): 36–40. DOI: 10.11868/j.issn.1001-4381.2014.08.007.GAO Y K. Influence of impact enhancements on tensile property of 304 austenite steel [J]. Journal of Materials Engineering, 2014(8): 36–40. DOI: 10.11868/j.issn.1001-4381.2014.08.007. [58] STARMAN B, HALLBERG H, WALLIN M, et al. Differences in phase transformation in laser peened and shot peened 304 austenitic steel [J]. International Journal of Mechanical Sciences, 2020, 176: 105535. DOI: 10.1016/j.ijmecsci.2020.105535. [59] LUO K Y, LU J Z, ZHANG Y K, et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel [J]. Materials Science and Engineering: A, 2011, 528(13–14): 4783–4788. DOI: 10.1016/j.msea.2011.03.041. [60] MIN N, LI W, JIN X J. α to γ transformation in the nanostructured surface layer of pearlitic steels near room temperature [J]. Scripta Materialia, 2008, 59(8): 806–809. DOI: 10.1016/j.scriptamat.2008.05.038. [61] CHEN S, MU J, WANG Y D, et al. Formation of omega phase induced by laser shock peening in Ti-17 alloy [J]. Materials Characterization, 2020, 159: 110017. DOI: 10.1016/j.matchar.2019.110017. [62] LU Y, ZHAO J B, QIAO H C, et al. A study on the surface morphology evolution of the GH4619 using warm laser shock peening [J]. AIP Advances, 2019, 9(8): 085030. DOI: 10.1063/1.5082755. [63] HSU H C, LIN Y C, WANG S H, et al. Corrigendum to “Inducement of bainite and carbide transformation from retained austenite based on a high strain rate” [Scr. Mater. 62 (2010) 372–375] [J]. Scripta Materialia, 2010, 62(9): 726. DOI: 10.1016/j.scriptamat.2010.01.029. [64] 郎玉婧, 崔华, 蔡元华, 等. 应变诱导析出对7050合金连续热变形组织的影响 [J]. 中国有色金属学报, 2012, 22(10): 2726–2733. DOI: 10.19476/j.ysxb.1004.0609.2012.10.004.LANG Y J, CUI H, CAI Y H, et al. Effect of strain-induced precipitation on subsequent hot deformed microstructure of 7050 alloy [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(10): 2726–2733. DOI: 10.19476/j.ysxb.1004.0609.2012.10.004. [65] WANG Y, LIN D L, LAW C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. Journal of Materials Science Letters, 2000, 19(13): 1185–1188. DOI: 10.1023/A:1006723629430. [66] POUR-ALI S, KIANI-RASHID A R, BABAKHANI A, et al. Correlation between the surface coverage of severe shot peening and surface microstructural evolutions in AISI 321: a TEM, FE-SEM and GI-XRD study [J]. Surface and Coatings Technology, 2018, 334: 461–470. DOI: 10.1016/j.surfcoat.2017.11.062. [67] HUANG F, TAO N R. Effects of strain rate and deformation temperature on microstructures and hardness in plastically deformed pure aluminum [J]. Journal of Materials Science & Technology, 2011, 27(1): 1–7. DOI: 10.1016/S1005-0302(11)60017-0. [68] POUR-ALI S, KIANI-RASHID A R, BABAKHANI A. Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening [J]. Vacuum, 2017, 144: 152–159. DOI: 10.1016/j.vacuum.2017.07.016. [69] TAO N R, WANG Z B, TONG W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Materialia, 2002, 50(18): 4603–4616. DOI: 10.1016/S1359-6454(02)00310-5. [70] YANG Y, ZHOU K, ZHANG H, et al. Thermal stability of microstructures induced by laser shock peening in TC17 titanium alloy [J]. Journal of Alloys and Compounds, 2018, 767: 253–258. DOI: 10.1016/j.jallcom.2018.06.030. [71] LEE W S, CHEN T H. Rate-dependent deformation and dislocation substructure of Al-Sc alloy [J]. Scripta Materialia, 2006, 54(8): 1463–1468. DOI: 10.1016/j.scriptamat.2005.12.054. [72] 蔡大勇. GH169及GH696高温合金热加工工艺基础研究[D]. 秦皇岛: 燕山大学, 2003: 66−74. [73] YE C, SUSLOV S, KIM B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening [J]. Acta Materialia, 2011, 59(3): 1014–1025. DOI: 10.1016/j.actamat.2010.10.032. [74] LIAO Y L, YE C, GAO H, et al. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: dislocation dynamic simulation and experiments [J]. Journal of Applied Physics, 2011, 110(2): 023518. DOI: 10.1063/1.3609072. [75] BASAVAKUMAR K G, MUKUNDA P G, CHAKRABORTY M. Influence of grain refinement and modification on microstructure and mechanical properties of Al-7Si and Al-7Si-2.5Cu cast alloys [J]. Materials Characterization, 2008, 59(3): 283–289. DOI: 10.1016/j.matchar.2007.01.011. [76] MYHR O R, HOPPERSTAD O S, BØRVIK T. A combined precipitation, yield stress, and work hardening model for Al-Mg-Si alloys incorporating the effects of strain rate and temperature [J]. Metallurgical and Materials Transactions A, 2018, 49(8): 3592–3609. DOI: 10.1007/s11661-018-4675-3. [77] 冯飞. 应变速率对GH4169合金拉伸变形行为的影响[D]. 沈阳: 东北大学, 2013: 55−57. [78] ZHANG P, WANG Y Q, XIE Y N, et al. A study on the dynamic shock performance of 7055-T6I4 aluminum alloy based on experimental and simulation [J]. Vacuum, 2018, 157: 306–311. DOI: 10.1016/j.vacuum.2018.08.042. [79] YANG Y, WANG H M, ZHOU K, et al. Effect of laser shock peening and annealing temperatures on stability of AA2195 alloy near-surface microstructure [J]. Optics & Laser Technology, 2019, 119: 105569. DOI: 10.1016/j.optlastec.2019.105569. [80] 张孜昭, 许晓嫦, 刘志义, 等. 应变速率对强变形Al-Cu合金中析出相低温回溶速度的影响 [J]. 热处理, 2010, 25(2): 15–18. DOI: 10.3969/j.issn.1008-1690.2010.02.003.ZHANG Z Z, XU X C, LIU Z Y, et al. Effect of strain rate on redissolution rate of precipitated phase at low temperature in severely plastically deformed Al-Cu alloy [J]. Heat Treatment, 2010, 25(2): 15–18. DOI: 10.3969/j.issn.1008-1690.2010.02.003. [81] AN X H, WU S D, WANG Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Progress in Materials Science, 2019, 101: 1–45. DOI: 10.1016/j.pmatsci.2018.11.001. [82] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363. [83] LI Y S, ZHANG Y, TAO N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Materialia, 2009, 57(3): 761–772. DOI: 10.1016/j.actamat.2008.10.021. [84] CHEN A Y, RUAN H H, WANG J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel [J]. Acta Materialia, 2011, 59(9): 3697–3709. DOI: 10.1016/j.actamat.2011.03.005. [85] ZHANG H W, HEI Z K, LIU G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003, 51(7): 1871–1881. DOI: 10.1016/S1359-6454(02)00594-3. [86] LAINÉ S J, KNOWLES K M, DOORBAR P J, et al. Microstructural characterisation of metallic shot peened and laser shock peened Ti-6Al-4V [J]. Acta Materialia, 2017, 123: 350–361. DOI: 10.1016/j.actamat.2016.10.044. [87] YMAKOV V, WOLF D, PHILLPOT S R, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation [J]. Nature Materials, 2002, 1(1): 45–49. DOI: 10.1038/nmat700. [88] LIAO X Z, ZHOU F, LAVERNIA E J, et al. Deformation twins in nanocrystalline Al [J]. Applied Physics Letters, 2003, 83(24): 5062–5064. DOI: 10.1063/1.1633975. [89] 卢磊, 尤泽升. 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50(2): 129–136. DOI: 10.3724/sp.j.1037.2013.00697.LU L, YOU Z S. Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metallurgica Sinica, 2014, 50(2): 129–136. DOI: 10.3724/sp.j.1037.2013.00697. [90] LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. DOI: 10.1126/science.1159610. [91] 马晓光. 层错能对面心立方金属冷拔微观组织及织构演化的影响[D]. 西安: 西北工业大学, 2018: 1−18. [92] LI X Y, WEI Y J, LU L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464(7290): 877–880. DOI: 10.1038/nature08929. [93] CHEN H, LI F G, LI J H, et al. Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation [J]. Materials Science and Engineering: A, 2016, 671: 17–31. DOI: 10.1016/j.msea.2016.06.046. [94] WANG X, LI Y S, ZHANG Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. Journal of Materials Science & Technology, 2017, 33(7): 758–761. DOI: 10.1016/j.jmst.2016.11.006. [95] HASSANI-GANGARAJ S M, CHO K S, VOIGT H J L, et al. Experimental assessment and simulation of surface nanocrystallization by severe shot peening [J]. Acta Materialia, 2015, 97: 105–115. DOI: 10.1016/j.actamat.2015.06.054. [96] FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331(6024): 1587–1590. DOI: 10.1126/science.1200177. [97] LIU X C, ZHANG H W, LU K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342(6156): 337–340. DOI: 10.1126/science.1242578. [98] WANG C, WANG L, WANG C L, et al. Dislocation density-based study of grain refinement induced by laser shock peening [J]. Optics & Laser Technology, 2020, 121: 105827. DOI: 10.1016/j.optlastec.2019.105827. [99] ZHOU W F, REN X D, REN Y P, et al. Initial dislocation density effect on strain hardening in FCC aluminium alloy under laser shock peening [J]. Philosophical Magazine, 2017, 97(12): 917–929. DOI: 10.1080/14786435.2017.1285073. [100] WU X L, YANG M X, YUAN F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501–14505. DOI: 10.1073/pnas.1517193112. 期刊类型引用(3)
1. 王连华. 水-温循环作用下千枚岩的动态拉伸特性. 土木与环境工程学报(中英文). 2024(04): 109-119 . 百度学术
2. 杨荣周,徐颖. 基于SHPB劈裂实验技术的岩石冲击动力学教学模式与实践. 实验室研究与探索. 2024(08): 133-137 . 百度学术
3. 赵泽虎,李祥龙,胡启文,王建国. 含铜石榴黑云片岩动态力学特性及损伤本构模型. 兵工学报. 2023(12): 3805-3814 . 百度学术
其他类型引用(0)
-