含RDX四组元HTPB固体推进剂的冲击起爆特性研究

伍俊英 李姚江 杨利军 刘嘉锡 吴姣姣 张晓舟 陈朗

伍俊英, 李姚江, 杨利军, 刘嘉锡, 吴姣姣, 张晓舟, 陈朗. 含RDX四组元HTPB固体推进剂的冲击起爆特性研究[J]. 爆炸与冲击, 2021, 41(8): 082301. doi: 10.11883/bzycj-2020-0350
引用本文: 伍俊英, 李姚江, 杨利军, 刘嘉锡, 吴姣姣, 张晓舟, 陈朗. 含RDX四组元HTPB固体推进剂的冲击起爆特性研究[J]. 爆炸与冲击, 2021, 41(8): 082301. doi: 10.11883/bzycj-2020-0350
WU Junying, LI Yaojiang, YANG Lijun, LIU Jiaxi, WU Jiaojiao, ZHANG Xiaozhou, CHEN Lang. Shock initiation characteristics of four-component HTPB solid propellant containing RDX[J]. Explosion And Shock Waves, 2021, 41(8): 082301. doi: 10.11883/bzycj-2020-0350
Citation: WU Junying, LI Yaojiang, YANG Lijun, LIU Jiaxi, WU Jiaojiao, ZHANG Xiaozhou, CHEN Lang. Shock initiation characteristics of four-component HTPB solid propellant containing RDX[J]. Explosion And Shock Waves, 2021, 41(8): 082301. doi: 10.11883/bzycj-2020-0350

含RDX四组元HTPB固体推进剂的冲击起爆特性研究

doi: 10.11883/bzycj-2020-0350
详细信息
    作者简介:

    伍俊英(1977- ),女,博士,副教授,wjy1312@bit.edu.cn

  • 中图分类号: O381;V512

Shock initiation characteristics of four-component HTPB solid propellant containing RDX

  • 摘要: 为了研究含RDX四组元HTPB固体推进剂的冲击起爆行为和在低温条件下的适应性,在常温和低温条件下,对该固体推进剂进行了冲击加载拉氏分析实验。采用锰铜压力计测量了推进剂中不同位置处的压力变化历程,采用电离探针测量了固体推进剂的爆速。分析了固体推进剂的爆轰成长规律,获得了推进剂的临界起爆压力、爆速、爆压和爆轰成长距离等爆轰特征参量。通过对比不同条件下的特征参量发现,低温对固体推进剂的冲击起爆特性影响较小。此外,还对固体推进剂的冲击起爆过程进行了数值模拟,标定了固体推进剂点火增长模型的反应速率方程参数和推进剂的未反应JWL状态方程参数。
  • 图  1  固体推进剂的冲击起爆实验装置

    Figure  1.  Experimental apparatus for impact initiation of solid propellants

    图  2  含RDX四组元HTPB固体推进剂药片

    Figure  2.  Four-component HTPB solid propellant tablets containing RDX

    图  3  不同厚度隔板实验下的冲击起爆实验装置和后效实物照片

    Figure  3.  Experimental devices and aftereffect pictures of experiments with different thickness clapboards

    图  4  隔板厚度为50和45 mm时,推进剂中距离起爆端面不同位置处的压力时间曲线

    Figure  4.  Pressure-time curves of propellant at different positions measured from the surface of explosion initiation when the thickness of the clapboard is 50 and 45 mm

    图  5  隔板厚度40 mm时,推进剂中距离起爆端面不同位置处的压力时间曲线

    Figure  5.  Pressure-time curves of propellant at different positions measured from the surface of explosion initiation when the thickness of the clapboard is 40 mm

    图  6  计算模型示意图

    Figure  6.  Schematic diagram of the calculation model

    图  7  实验压力曲线与计算压力曲线的比较

    Figure  7.  Comparison of experimental and calculated pressure curves

    图  8  固体推进剂冲击起爆过程中不同时刻的压力云图(隔板厚度为40 mm)

    Figure  8.  Pressure contours in solid propellant at different times during the shock detonation when the thickness of the clapboard is 40 mm

    图  9  隔板厚度为50 mm时,固体推进剂中不同位置处的压力时间曲线

    Figure  9.  Experimental and calculated pressure-time curves at different positions in the solid propellant when the thickness of the clapboard is 50 mm

    表  1  不同实验条件下的冲击起爆实验结果

    Table  1.   Experimental results of shock initiation under different experimental conditions

    实验序号铝隔板厚度/mm实验条件见证板破坏情况反应情况药物残渣
    110常温穿孔起爆
    210常温穿孔起爆
    310常温穿孔起爆
    410−60 ℃冷冻5 h穿孔起爆
    530−60 ℃冷冻9 h 21 min穿孔起爆
    650−60 ℃冷冻4 h 25 min无损伤燃烧不完全
    740−60 ℃冷冻9 h 35 min穿孔起爆
    840常温穿孔起爆
    940−60 ℃冷冻6 h 25 min穿孔起爆
    1050常温无损伤燃烧
    1145常温有轻微损伤燃烧
    1240常温凹坑起爆
    1340常温穿孔起爆
    1450常温有轻微损伤燃烧不完全
    1545−60 ℃冷冻5 h无损伤燃烧不完全
    1640常温穿孔起爆
    1740常温穿孔起爆
    1850常温无损伤燃烧不完全
    1940−60 ℃冷冻12 h穿孔起爆
    2040常温穿孔起爆
    下载: 导出CSV

    表  2  不同实验条件下固体推进剂爆速的测量结果

    Table  2.   Experimental results of detonation velocity of the solid propellant under different conditions

    实验编号铝隔板厚度/mm实验条件爆速/(km·s−1
    310常温5.719
    410−60 ℃冷冻5 h5.854
    530−60 ℃冷冻9 h 21 min6.013
    650−60 ℃冷冻4 h 25 min
    740−60 ℃冷冻9 h 35 min5.769
    840常温5.749
    下载: 导出CSV

    表  3  波阵面压力峰值的实验值与计算值的比较

    Table  3.   Comparison of experimental and calculated wave front pressure peaks

    固体推进剂中位置/mm波阵面压力值/GPa误差/%
    实验计算
    0.0 6.16 5.78 6.17
    2.0 7.18 7.73−7.67
    3.4 8.11 8.94−10.23
    4.9 9.7910.47−6.95
    8.310.13 9.95 1.78
    9.411.0311.55−4.71
    13.311.8612.46−5.06
    18.312.0812.79−5.88
    60.013.1012.82 2.14
    78.012.8112.79 0.16
    87.813.0612.81 1.91
    下载: 导出CSV

    表  4  固体推进剂的点火增长反应速率方程参数

    Table  4.   Fitted parameters of reaction rate equation for ignition growth of solid propellant

    I/µs−1baxG1/(GPa−2·μs−1cdyG2/(GPa−1.2·μs−1egz
    1000.6670.03.0800.6671.02.0883.30.750.271.2
    下载: 导出CSV
  • [1] 王晓峰, 王亲会, 王宁飞. 开展高能固体推进剂危险性分级研究的建议 [J]. 火炸药学报, 2003, 26(1): 59–61. DOI: 10.3969/j.issn.1007-7812.2003.01.018.

    WANG X F, WANG Q H, WANG N F. Suggestion on studying hazard classification of high energy solid propellants [J]. Chinese Journal of Explosives and Propellants, 2003, 26(1): 59–61. DOI: 10.3969/j.issn.1007-7812.2003.01.018.
    [2] 廖林泉, 胥会祥, 李勇宏, 等. HTPB推进剂危险性实验研究 [J]. 火炸药学报, 2010, 33(4): 28–31, 43. DOI: 10.3969/j.issn.1007-7812.2010.04.007.

    LIAO L Q, XU H X, LI Y H, et al. Experimental study on hazard of HTPB propellants [J]. Chinese Journal of Explosives and Propellants, 2010, 33(4): 28–31, 43. DOI: 10.3969/j.issn.1007-7812.2010.04.007.
    [3] 常新龙, 龙兵, 胡宽, 等. HTPB推进剂低温裂纹扩展特性试验研究 [J]. 固体火箭技术, 2015, 38(1): 86–89, 106. DOI: 10.7673/j.issn.1006-2793.2015.01.016.

    CHANG X L, LONG B, HU K, et al. Experimental study on low temperature crack growth behavior of HTPB propellant [J]. Journal of Solid Rocket Technology, 2015, 38(1): 86–89, 106. DOI: 10.7673/j.issn.1006-2793.2015.01.016.
    [4] TARVER C M, FRIED L E, RUGGIERO A J, et al. Energy transfer in solid explosives: UCRL-JC-111343 [R]. Washington: USDOE, 1993.
    [5] VORTHMAN J E. Facilities for the study of shock induced decomposition of high explosives [J]. AIP Conference Proceedings, 1982, 78(1): 680–684. DOI: 10.1063/1.33249.
    [6] URTIEW P A, ERICKSON L M, ALDIS D F, et al. Shock initiation of LX-17 as a function of its initial temperature [C]// Proceedings of the Ninth Symposium (International) on Detonation. Portland: OCNR, 1989.
    [7] AVERIN A N, ALEKSEEV A V, BATALOV S V, et al. Investigation into low-temperatures influence on high explosive compounds sensitivity to shock-wave impacts [J]. AIP Conference Proceedings, 1996, 370(1): 847–850. DOI: 10.1063/1.50838.
    [8] 池家春, 刘雨生, 龚晏清, 等. JB9014炸药在常温和−54 ℃低温下冲击引爆压力场发展的实验研究 [J]. 高压物理学报, 2001, 15(1): 39–47. DOI: 10.11858/gywlxb.2001.01.006.

    CHI J C, LIU Y S, GONG Y Q, et al. Investigation of shock pressure evolution of initiation in IHE’s JB9014 at ambient and −54 ℃ [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 39–47. DOI: 10.11858/gywlxb.2001.01.006.
    [9] 伍俊英, 陈朗, 鲁建英, 等. 高能固体推进剂冲击起爆特征研究 [J]. 兵工学报, 2008, 29(11): 1315–1319. DOI: 10.3321/j.issn:1000-1093.2008.11.007.

    WU J Y, CHEN L, LU J Y, et al. Research on shock initiation of the high energy solid propellants [J]. Acta Armamentarii, 2008, 29(11): 1315–1319. DOI: 10.3321/j.issn:1000-1093.2008.11.007.
    [10] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to −55 ℃ [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
    [11] CHEN L, PI Z D, LIU D Y, et al. Shock initiation of the CL-20-based explosive C-1 measured with embedded electromagnetic particle velocity gauges [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 1060–1069. DOI: 10.1002/prep.201600048.
    [12] 刘丹阳, 陈朗, 杨坤, 等. CL-20基炸药爆轰产物JWL状态方程实验标定方法研究 [J]. 兵工学报, 2016, 37(S1): 141–145.

    LIU D Y, CHEN L, YANG K, et al. Calibration method of parameters in JWL equation of state for detonation products of CL-20-based explosives [J]. Acta Armamentarii, 2016, 37(S1): 141–145.
    [13] PI Z D, CHEN L, WU J Y. Temperature-dependent shock initiation of CL-20-based high explosives [J]. Central European Journal of Energetic Materials, 2017, 14(2): 361–374. DOI: 10.22211/cejem/68392.
    [14] 裴红波, 钟斌, 李星瀚, 等. RDX基含铝炸药圆筒试验及状态方程研究 [J]. 火炸药学报, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.

    PEI H B, ZHONG B, LI X H, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives [J]. Chinese Journal of Explosives and Propellants, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.
    [15] 黄韵, 王旭, 徐森, 等. HMX基推进剂临界起爆压力的研究 [J]. 爆破器材, 2020, 49(1): 34–39. DOI: 10.3969/j.issn.1001-8352.2020.01.007.

    HUANG Y, WANG X, XU S, et al. Study on critical initiation pressure of HMX-base propellant [J]. Explosive Materials, 2020, 49(1): 34–39. DOI: 10.3969/j.issn.1001-8352.2020.01.007.
    [16] 孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995.
    [17] 章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  317
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2021-01-05
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回