超高速碰撞产生的电磁辐射

龚良飞 张庆明 龙仁荣 张凯 巨圆圆

龚良飞, 张庆明, 龙仁荣, 张凯, 巨圆圆. 超高速碰撞产生的电磁辐射[J]. 爆炸与冲击, 2021, 41(2): 021402. doi: 10.11883/bzycj-2020-0396
引用本文: 龚良飞, 张庆明, 龙仁荣, 张凯, 巨圆圆. 超高速碰撞产生的电磁辐射[J]. 爆炸与冲击, 2021, 41(2): 021402. doi: 10.11883/bzycj-2020-0396
GONG Liangfei, ZHANG Qingming, LONG Renrong, ZHANG Kai, JU Yuanyuan. The electromagnetic radiation produced by hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021402. doi: 10.11883/bzycj-2020-0396
Citation: GONG Liangfei, ZHANG Qingming, LONG Renrong, ZHANG Kai, JU Yuanyuan. The electromagnetic radiation produced by hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021402. doi: 10.11883/bzycj-2020-0396

超高速碰撞产生的电磁辐射

doi: 10.11883/bzycj-2020-0396
基金项目: 国家重点研究与发展计划(2016YFC0801204);民用航天预研项目(D020304)
详细信息
    作者简介:

    龚良飞(1990- ),女,博士,讲师,liangfeigong@163.com

    通讯作者:

    张庆明(1963- ),男,博士,教授,qmzhang@bit.edu.cn

  • 中图分类号: O389

The electromagnetic radiation produced by hypervelocity impact

  • 摘要: 超高速碰撞产生的电磁辐射是固体物质在强冲击作用下的重要物理响应,在深空探测、航天器对空间碎片的防护设计、武器毁伤评估应用广泛。本文中概述了超高速碰撞产生的电磁辐射现象,总结了不同碰撞条件下,超高速碰撞产生微波和闪光的时频特性;从超高速碰撞产生材料破碎和产生等离子体两个方面,分析了超高速碰撞产生微波的辐射模型;归纳了超高速碰撞下的发光机理,并阐述了超高速碰撞产生连续光谱和线谱的辐射模型,指出了超高速碰撞产生电磁辐射研究存在的不足与发展趋势。
  • 图  1  各波段电磁波对应的波长和频率

    Figure  1.  The wavelength and frequency of electromagnetic wave in each band

    图  2  以不同速度和角度碰撞时产生的微波频谱[31]

    Figure  2.  Microwave spectra produced by collision at different velocities and angles[31]

    图  3  超高速碰撞厚靶时产生的闪光光谱[32]

    Figure  3.  The flash spectra generated by hypervelocity impact on thick targets[32]

    图  4  石英弹丸撞击白云石产生的光谱[14]

    Figure  4.  The spectra produced by quartz projectiles impacting on dolomite targets[14]

    图  5  不同碰撞速度和角度下产生的闪光光谱[31]

    Figure  5.  Flash spectra at different collisional velocities and angles[31]

    图  6  纯铝超高速碰撞产生的紫外波段的光谱辐射强度[24]

    Figure  6.  Spectral radiation intensity in ultraviolet band generated by hypervelocity impact of pure aluminum[24]

    图  7  尼龙弹丸撞击不同厚度铝靶时产生的微波时域特性[15]

    Figure  7.  Microwave time domain characteristics of nylon projectile impacting aluminum targets with different thickness[15]

    图  8  微波与闪光信号的对比[43]

    Figure  8.  Contrast between the microwave and flash signals[43]

    图  9  微波与撞击速度和靶板材料的关系[44]

    Figure  9.  Relationship between microwave and impact velocity and target material[44]

    图  10  球形铝弹丸撞击Whipple防护结构产生的闪光现象[45](6.7 km/s)

    Figure  10.  The Flash caused by impacting of the spherical aluminum projectile on Whipple protective structure (6.7 km/s)[45]

    图  11  闪光时域特性[47]

    Figure  11.  Time-resolved characteristic of flash[47]

    图  12  闪光衰减指数与靶板的关系[47]

    Figure  12.  The relationship between flash attenuation index and target[47]

    图  13  不同碰撞参数下的光谱演化过程[24]

    Figure  13.  Spectral evolution under different collision parameters[24]

    图  14  弹丸分子与靶板原子碰撞后原子的电离[22]

    Figure  14.  The ionization of atoms after collision between projectile molecules and target plate atoms[22]

    图  15  材料破碎时产生微波辐射模型

    Figure  15.  The model of microwave radiation when materials are damaged

    图  16  等离子体产生微波辐射模型

    Figure  16.  Model of microwave radiation generated by plasma

    图  17  等离子体中电位移随时间的变化关系

    Figure  17.  Time dependence of electric displacement in plasma

    图  18  超高速碰撞产生可见光的机理

    Figure  18.  The mechanism of visible light caused by hypervelocity impact

    表  1  铝原子和铝离子的共振线

    Table  1.   Resonance lines of aluminum atom and aluminum ion

    元素跃迁能级波长/nm对基态的能量/eV
    Al Ⅰ3s23p2P1/2~3s23d2D3/2308.2154.02
    Al Ⅰ3s23p2P1/2~3s24s2S1/2394.4013.15
    Al Ⅱ3s21S0~3s3p3P2265.0074.67
    Al Ⅱ3s21S0~3s3p3P1266.9164.65
    下载: 导出CSV
  • [1] 经福谦. 超高速碰撞现象 [J]. 爆炸与冲击, 1990, 10(3): 279–288.

    JING F Q. Hypervelocity impact phenomena [J]. Explosion and Shock Waves, 1990, 10(3): 279–288.
    [2] PERKINS M A, SIMPSON J A, TUZZOLINO A J. A cometary and interplanetary dust experiment on the Vega spacecraft missions to Halley’s Comet [J]. Nuclear Instruments and Methods in Physics Research A, 1985, 239(2): 310–323. DOI: 10.1016/0168-9002(85)90731-4.
    [3] LEDERER S M, JENSEN E, FANE M, et al. Unveiling clues from spacecraft missions to comets and asteroids through impact experiments [C] // Division for Planetary Sciences Meeting Abstracts, 2016: 331.01 https://ui.adsabs.harvard.edu/abs/ 2016DPS....4833101L.
    [4] A’HEARN M F, BELTON M J S, DELAMERE A, et al. Deep impact: a large-scale active experiment on a cometary nucleus [J]. Space Science Reviews, 2005, 117(1−2): 1–21. DOI: 10.1007/s11214-005-3387-3.
    [5] ERNST C M, SCHULTZ P H. Evolution of the deep impact flash: implications for the nucleus surface based on laboratory experiments [J]. Icarus, 2007, 190(2): 334–344. DOI: 10.1016/j.icarus.2007.03.030.
    [6] CRAWFORD D A, SCHULTZ P H. Laboratory observations of impact−generated magnetic fields [J]. Nature, 1988, 336(6194): 50–52. DOI: 10.1029/91JE02012.
    [7] ANZ-MEADOR P. Orbital debris quarterly news [R]. Texas: NASA Oribital Debris Program Office, 2020.
    [8] WU Q, ZHANG Q M, LONG R R, et al. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum [J]. Applied Physics Letters, 2016, 108(10): 101903. DOI: 10.1063/1.4943584.
    [9] ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
    [10] FLETCHER A, MATHIAS D L, CLOSE S. Susceptibility of spacecraft to impact-induced electromagnetic pulses [C] // 2015 Annual Reliability and Maintainability Symposium. 2015: 1−6. DOI: 10.1109/RAMS.2015.7105118.
    [11] THOMSON G M, MCNEIR M R. Impact flash: a tool for rapid battle damage assessment [C] // Infrared Technology and Applications XXX. 2004, 5406: 690−700. DOI: 10.1117/12.538654.
    [12] LAWRENCE R J, REINHART W D, CHHABILDAS L C, et al. Spectral measurements of hypervelocity impact flash [J]. International Journal of Impact Engineering, 2006, 33(1-12): 353–363. DOI: 10.1016/j.ijimpeng.2006.09.010.
    [13] RUDOLPH M. Review of radio frequency emission from hypervelocity impact plasmas [J]. Procedia Engineering, 2013, 58(1): 409–417. DOI: 10.1016/j.proeng.2013.05.047.
    [14] SUGITA S, SCHULTZ P H, ADAMS M A. Spectroscopic measurements of vapor clouds due to oblique impacts [J]. Journal of Geophysical Research Planets: E, 1998, 103(8): 19427–19441. DOI: 10.1029/98je02026.
    [15] TAKANO T, MUROTANI Y, MAKI K, et al. Microwave emission due to hypervelocity impacts and its correlation with mechanical destruction [J]. Journal of Applied Physics, 2002, 92(9): 5550–5554. DOI: 10.1063/1.1513885.
    [16] MA Z X, SHI A H, LI J L, et al. Radiation mechanism analysis of hypervelocity impact ejecta cloud [J]. International Journal of Impact Engineering, 2020, 141: 103560. DOI: 10.1016/j.ijimpeng.2020.103560.
    [17] SUGITA S, SCHULTZ P H. Interactions between impact-induced vapor clouds and the ambient atmosphere: 1. spectroscopic observations using diatomic molecular emission [J]. Journal of Geophysical Research: E, 2003, 108(6): 5051. DOI: 10.1029/2002je001959.
    [18] CLOSE S, LINSCOTT I, LEE N, et al. Detection of electromagnetic pulses produced by hypervelocity micro particle impact plasmas [J]. Physics of Plasmas, 2013, 20(9): 2102. DOI: 10.1063/1.4819777.
    [19] HEW Y M, GOEL A, CLOSE S, et al. Hypervelocity impact flash and plasma on electrically biased spacecraft surfaces [J]. International Journal of Impact Engineering, 2018, 121: 1–11. DOI: 10.1016/j.ijimpeng.2018.05.008.
    [20] CLOSE S, KELLEY M, FLETCHER A, et al. RF signatures of hypervelocity impacts on spacecraft [C] // 3rd AIAA Atmospheric Space Environments Conference. 2011: 3150. DOI: 10.2514/6.2011-3150.
    [21] SUGITA S, SCHULTZ P H. Spectroscopic characterization of hypervelocity jetting: comparison with a standard theory [J]. Journal of Geophysical Research Planets: E, 1999, 104(12): 30825–30845. DOI: 10.1029/1999JE001061.
    [22] TAKANO T, IKEDA H, MAEDA T. Consideration of the mechanism of microwave emission due to material destruction [J]. Journal of Applied Physics, 2010, 108(8): 083722. DOI: 10.1063/1.3499291.
    [23] JEAN B, ROLLINS T L. Radiation from hypervelocity impact generated plasma [J]. AIAA Journal, 2012, 8(10): 1742–1748. DOI: 10.2514/3.5984.
    [24] MA Z X, SHI A H, LI J L, et al. Radiation evolution characteristics of the ejecta cloud produced by aluminum projectiles hypervelocity impacting aluminum plates [J]. International Journal of Impact Engineering, 2020, 138: 103480. DOI: 10.1016/j.ijimpeng.2019.103480.
    [25] MA Z X, HUANG J, SHI A H, et al. Analysis technique for ejecta cloud temperature using atomic spectrum [J]. International Journal of Impact Engineering, 2016, 91: 25–33. DOI: 10.1016/j.ijimpeng.2015.12.008.
    [26] MA Z X, HUANG J, SHI A H, et al. The analysis technique for ejecta cloud temperature based on atomic spectrum [J]. Procedia Engineering, 2015, 103: 357–364. DOI: 10.1016/j.proeng.2015.04.033.
    [27] ZHANG K, ZHANG Q M, LONG R R. The experiment study on flash spectrum produced by hypervelocity impact [J]. Applied Mechanics & Materials, 2015, 782: 197–203. DOI: 10.4028/www.scientific.net/AMM.782.197.
    [28] XUE Y J, ZHANG Q M, LIU D Y, et al. Hypersonic impact flash characteristics of a long-rod projectile collision with a thin plate target [J]. Defence Technology, 2021, 17(2): 368–376. DOI: 10.1016/j.dt.2020.02.011.
    [29] ZHANG Q M, GONG L F, MA Y F, et al. The electromagnetic properties of plasma produced by hypervelocity impact [J]. Physics of Plasmas, 2018, 25(2): 022906. DOI: 10.1063/1.5009067.
    [30] LI H W, HAN J W, CAI M H, et al. The analogue experiment of small space debris impact inducing solar array discharge [J]. International Journal of Impact Engineering, 2020, 143: 103582. DOI: 10.1016/j.ijimpeng.2020.103582.
    [31] 张凯. 超高速碰撞LY12铝靶产生电磁辐射实验研究[D]. 北京: 北京理工大学, 2016. DOI: CNKI:CDMD:1.1018.811986.
    [32] ZHANG K, LONG R R, ZHANG Q M, et al. Flash characteristics of plasma induced by hypervelocity impact [J]. Physics of Plasmas, 2016, 23(8): 083519. DOI: 10.1063/1.4960297.
    [33] LAWRENCE R J, REINHART W D, CHHABILDAS L C, et al. Hypervelocity impact flash at 6, 11, and 25 KM/S [C] // AIP Conference Proceedings. 2006, 845(1): 1349−1352. DOI: 10.1063/1.2263574.
    [34] DUGGER P, HENDRIX R. Measurements of transient hypervelocity impact phenomena at the AEDC [C] // 32nd Aerospace Sciences Meeting and Exhibit. 1994: 87. DOI: 10.2514/6.1994-87.
    [35] REINHART W D, THORNHILL T F, CHHABILDAS L C, et al. Temperature measurements of expansion products from shock compressed materials using high-speed spectroscopy [J]. International Journal of Impact Engineering, 2008, 35(12): 1745–1755. DOI: 10.1016/j.ijimpeng.2008.07.062.
    [36] 石安华, 柳森, 黄洁, 等. 铝弹丸超高速撞击铝靶光谱辐射特性实验研究 [J]. 宇航学报, 2008, 29(2): 715–717. DOI: 10.3873/j.issn.1000-1328.2008.02.061.

    SHI A H, LIU S, HUANG J, et al. Spectra measurement of radiation produced by aluminum projectiles impacting aluminum targets at hypervelocity speeds [J]. Journal of Astronautics, 2008, 29(2): 715–717. DOI: 10.3873/j.issn.1000-1328.2008.02.061.
    [37] 石安华, 柳森, 黄洁, 等. 超高速碰撞可见光谱辐射强度测量技术 [J]. 实验流体力学, 2007, 21(4): 83–85. DOI: 10.3969/j.issn.1672-9897.2007.04.017.

    SHI A H, LIU S, HUANG J, et al. Visible spectral radiant intensity measuring technology for hypervelocity impact phenomena [J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 83–85. DOI: 10.3969/j.issn.1672-9897.2007.04.017.
    [38] MEYER-VERNET N, MAKSIMOVIC M, CZECHOWSKI A, et al. Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind? [J]. Solar Physics, 2009, 256(1−2): 463–474. DOI: 10.1007/s11207-009-9349-2.
    [39] MEYER-VERNET N, LECACHEUX A, KAISER M L, et al. Detecting nanoparticles at radio frequencies: Jovian dust stream impacts on Cassini/RPWS [J]. Geophysical Research Letters, 2009, 36(3). DOI: 10.1029/2008GL036752.
    [40] GURNETT D A, KURTH W S, KIRCHNER D L, et al. The Cassini radio and plasma wave investigation [J]. Space Science Reviews, 2004, 114(1−4): 395–463. DOI: 10.1007/s11214-004-1434-0.
    [41] WARWICK J W, PEARCE J B, EVANS D R, et al. Planetary radio astronomy observations from Voyager 1 near Saturn [J]. Science, 1981, 212(4491): 239–243. DOI: 10.1126/science.212.4491.239.
    [42] WARWICK J W, EVANS D R, ROMIG J H, et al. Planetary radio astronomy observations from Voyager 2 near Saturn [J]. Science, 1982, 215(4532): 582–587. DOI: 10.1126/science.215.4532.582.
    [43] MAKI K, TAKANO T, FUJIWARA A, et al. Radio-wave emission due to hypervelocity impacts in relation to optical observation and projectile speed [J]. Advances in Space Research, 2004, 34(5): 1085–1089. DOI: 10.1016/j.asr.2003.02.032.
    [44] MAKI K, SOMA E, TAKANO T, et al. Dependence of microwave emissions from hypervelocity impacts on the target material [J]. Journal of Applied Physics, 2005, 97(10): 104911. DOI: 10.1063/1.1896092.
    [45] THOMA K, SCHÄFER F, HIERMAIER S, et al. An approach to achieve progress in spacecraft shielding [J]. Advances in Space Research, 2004, 34(5): 1063–1075. DOI: 10.1016/j.asr.2003.03.034.
    [46] HERMALYN B, SCHULTZ P H, SHIRLEY M, et al. Scouring the surface: ejecta dynamics and the LCROSS impact event [J]. Icarus, 2012, 218(1): 654–665. DOI: 10.1016/j.icarus.2011.12.025.
    [47] ERNST C M, SCHULTZ P H. Effect of initial conditions on impact flash decay [C] // Lunar and Planetary Science Conference. 2003: 2020. https://ui.adsabs.harvard.edu/abs/2003LPI....34.2020E.
    [48] ERNST C M, SCHULTZ P H. Effect of velocity and angle on light intensity generated by hypervelocity [C] // Proceedings, 33rd Lunar and Planetary Science Conference. 2002: 1782. https://ui.adsabs.harvard.edu/abs/2002LPI....33.1782E.
    [49] BAIRD J K, HOUGH G R, KING T R. Velocity dependence of impact fluorescence [J]. International Journal Of Impact Engineering, 1997, 19(3): 273–276. DOI: 10.1016/S0734-743X(96)00039-5.
    [50] BURCHELL M J, KAY L, RATCLIFF P R. Use of combined light flash and plasma measurements to study hypervelocity impact processes [J]. Advances in Space Research, 1996, 17(12): 141–145. DOI: 10.1016/0273-1177(95)00772-7.
    [51] MACCORMACK R W. Investigation of impact flash at low ambient pressures [C] // 6th Symposium on Hypervelocity Impact. 1963: 613−625.
    [52] EICHHORN G. Analysis of the hypervelocity impact process from impact flash measurements [J]. Planetary and Space Science, 1976, 24(8): 771–781. DOI: 10.1016/0032-0633(76)90114-8.
    [53] MISRA A. Electromagnetic effects at metallic fracture [J]. Nature, 1975, 254(5496): 133–134. DOI: 10.1038/254133a0.
    [54] FLETCHER A, CLOSE S, MATHIAS D. Simulating plasma production from hypervelocity impacts [J]. Physics of Plasmas, 2015, 22(9): 093504. DOI: 10.1063/1.4930281.
    [55] JU Y Y, ZHANG Q M, ZHANG D J, et al. Theoretical model for plasma expansion generated by hypervelocity impact [J]. Physics of Plasmas, 2014, 21(9): 092112. DOI: 10.1063/1.4895592.
    [56] ZEL’DOVICH Y B, RAIZER Y P. Physics of shock waves and high-temperature hydrodynamic phenomena [M]. Chicago: Courier Corporation, 2002.
    [57] GHISELLINI G. Radiative processes in high energy astrophysics [M]. New York: Springer, 2012: 873. DOI: 10.1007/978-3-319-00612-3.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  437
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2020-11-02
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回