Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

自由面变化条件下隧道电子雷管爆破参数确定方法

刘翔宇 龚敏 吴昊骏 安迪

郭伟国. 动态本构关系简介[J]. 爆炸与冲击, 2022, 42(9): 091400. doi: 10.11883/bzycj-2022-0411
引用本文: 刘翔宇, 龚敏, 吴昊骏, 安迪. 自由面变化条件下隧道电子雷管爆破参数确定方法[J]. 爆炸与冲击, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428
GUO Weiguo. An introduction to dynamic consititutive relation ship[J]. Explosion And Shock Waves, 2022, 42(9): 091400. doi: 10.11883/bzycj-2022-0411
Citation: LIU Xiangyu, GONG Min, WU Haojun, AN Di. Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface[J]. Explosion And Shock Waves, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428

自由面变化条件下隧道电子雷管爆破参数确定方法

doi: 10.11883/bzycj-2020-0428
基金项目: 中央高校基本科研业务费专项资金(FRF-AT-19-005)
详细信息
    作者简介:

    刘翔宇(1989- ),男,博士研究生,L1270039777@163.com

    通讯作者:

    龚 敏(1963- ),男,博士,教授,gongmustb@163.com

  • 中图分类号: O389; U455.6

Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface

  • 摘要: 电子雷管的技术潜力目前仍未在隧道工程中得以充分发挥,一个重要原因是没有严密理论支撑的爆破参数计算方法,药量、孔间延时等核心参数多沿用普通矿山法设计;其次是不能解决第二自由面形成后爆破参数计算准确性问题。以重庆观音桥隧道为研究背景,基于Anderson理论和电子雷管延时特性,提出隧道爆破在单自由面形成双自由面过程中,不同自由面条件下电子雷管爆破参数设计的新方法。现场获取不同药量单自由面单孔爆破振动曲线,逐一计算各孔间延时下的多孔合成振动,对比不同药量、不同延时合成振动曲线后确定单自由面爆破参数;根据电子雷管特点设计短延时掏槽爆破现场试验,获得起爆48 ms后已形成第二自由面;据此设计第二自由面形成后单孔爆破试验并计算双自由面下的合成振速、爆破参数,最终形成爆破全过程爆破参数计算方法。对计算结果进行综合分析后,现场设计主掏槽单孔药量1.2 kg,辅助掏槽单孔药量1.4 kg,孔间延时为5 ms;主掏槽与辅助掏槽间最小时差为35 ms;采用上述优化参数进行现场试验,在低振速控制的同时实现高效进尺。
  • 本构关系,也称本构方程、物理方程、物性方程、本构模型等,是描述质点的应力应变关系,是理解物体变形响应、求解内部变量和进行结构设计必要的方程。而动态本构关系描述的是动态载荷下连续介质内部变量之间的力学关系,通常材料的弹性、伪弹性、黏性、塑性、黏流性等力学性能以及它们的叠加组合对温度、加载率、材料微观组织结构等比较敏感,例如金属材料的动态本构关系是一个或一组方程,可将应变率˙εij与应力σij、应力率˙σij、温度T、材料的热力学历史以及材料的许多结构参数s1s2s3等联系起来。这些结构参数包括位错密度、位错本身及其相互作用、晶粒尺寸等。这样,其本构的率关系可以用一个统一的方程˙εij=f(σij,˙σij,T,s1,s2s3,...)来表示。

    对材料动态响应的研究可以追溯到19世纪末,科学家们先后在Hopkinson杆实验和Charp实验等中发现材料在冲击加载下的性能与准静态下的性能具有显著差异,由此开启了对材料率效应的广泛研究,而对动态本构关系的研究可追溯到20世纪初。热激活理论的提出是金属材料动态本构关系发展的里程碑,揭示了应变率与温度耦合效应的物理基础。两次世界大战后,出于对战争、恐怖主义威胁的警惕,对地震、海啸等自然灾害的预防,以及航空航天、航海、能源开采、核工业等工程领域的发展需求,材料和结构在冲击与爆炸载荷下的动态变形失效方面的研究大量涌现。20世纪60年代以来,随着计算力学的快速发展,建立适用于分析复杂极端工况下的结构力学响应的材料动态本构模型成为关键环节。

    建立材料动态本构关系也是冲击动力学最基本的问题之一。从本构模型的类型来说,唯象本构模型具有简洁的解析形式,在工程中应用广泛,具有物理基础的本构模型则可以更好地反映材料变形过程中的内在物理机制,而近年来出现的基于人工神经网络的本构模型则具有更好的预测精度和灵活性。由于大量新材料和具有特殊性能结构材料的涌现,目前建立兼具科学性和工程适用性的材料动态本构关系仍具有很大的挑战。如多维材料、微结构调控材料、微纳米结构材料、增材制造材料、高熵合金等,其动态本构关系的建立受到研究者的极大关注。动态本构关系向着多变量复杂化、高准确度等方向发展,可从以下两方面看出。

    (1)典型金属材料在一定率-温范围内可能出现如动态应变时效、变形孪晶、冲击相变和不同于静载下的位错交滑移(Kear-Wilsdorf lock现象)等微观机制,使得材料会出现反常的应变率和温度敏感性,这时传统本构模型不再适用,需要建立考虑这类微观机制和准确描述反常率-温耦合效应的动态本构模型。

    (2)以往,由于实验条件限制,揭示材料力学行为采用单轴加载,本构方程以单轴一维应力应变状态建立。这些都与实际结构中材料的力学状态不一致,且材料在不同应力状态下的本构行为具有差异性(如拉-压不对称性),应力三轴度、罗德角等应力状态参数与应变率的耦合关系的物理基础还不明确,实际上,材料在三轴复杂应力状态下的本构行为也并非是单轴应力状态下的简单叠加。因此,建立考虑复杂应力状态的三维动态本构模型就很有意义。

    经特邀和按照《爆炸与冲击》期刊的严格审稿流程,本专题特别呈现了不同材料类型、不同研究方向的专家,就最新的动态本构关系建立和本构关系的发展报道了各自最新的研究成果,在此对他们表示衷心的感谢,对《爆炸与冲击》编辑部和曾月蓉老师的有力支持表示感谢!

    西北工业大学 郭伟国 教授  

  • 图  1  研究流程

    Figure  1.  Research process chart

    图  2  单自由面单孔爆破试验炮孔布置示意图

    Figure  2.  Layout of holes in single-hole blasting test with single free surface

    图  3  现场实测单自由面单孔振动波形

    Figure  3.  Single-hole vibration waveforms of single free surface measured on site

    图  4  1.4 kg药量单孔波形拟合曲线与实测曲线对比

    Figure  4.  Comparison between fitting curve and measured curve of 1.4 kg charge single-hole waveform

    图  5  单自由面下不同孔间延时8孔叠加最大振速

    Figure  5.  Eight-holes maximum superimposed vibration velocity with different delays under single free surface

    图  6  优化后掏槽孔炮孔布置图

    Figure  6.  Layout of optimized cut holes

    图  7  1.2 kg单自由面下不同延时4孔叠加最大振速

    Figure  7.  Four-holes maximum superimposed vibration velocity of 1.2 kg with different delays under single free surface

    图  8  8 ms孔间延时的计算合成振动曲线与实测振动曲线对比图

    Figure  8.  Comparison between calculated superimposed vibration curve and measured vibration curve under 8 ms delay

    图  9  第二自由面形成后单孔爆破试验炮孔布置示意图

    Figure  9.  Holes layout of single-hole blasting test after the second free surface is formed

    图  10  第二自由面形成前后1.4 kg单孔实测波形对比图

    Figure  10.  Comparison between measured single-hole waveforms of 1.4 kg before and after the second free surface is formed

    图  11  主掏槽与辅助掏槽之间不同延时叠加最大振速

    Figure  11.  Maximum superimposed vibration velocity of different delays between main cut and auxiliary cut holes

    图  12  ΔD=50 ms的计算曲线和实测曲线对比图

    Figure  12.  Comparison between calculated and measured curves when ΔD = 50 ms

    图  13  第二自由面形成前后1.4 kg不同延时下8孔叠加最大振速对比图

    Figure  13.  Comparison of 8-holes maximum superimposed vibration velocity of 1.4 kg under different delays before and after the formation of the second free surface

    图  14  辅助孔不同孔间延时振动强度对比区域

    Figure  14.  Vibration velocity comparison area of auxiliary holes with different delays

    图  15  辅助孔不同延时的爆破振动波形

    Figure  15.  Blasting vibration waveform of auxiliary holes with different delays

    图  16  爆破试验炮孔布置图

    Figure  16.  Holes layout of blasting test

    图  17  爆破试验实测振动波形

    Figure  17.  Measured vibration waveform of blasting test

  • [1] 汪旭光, 沈立晋. 工业雷管技术的现状和发展 [J]. 工程爆破, 2003, 9(3): 52–57. DOI: 10.3969/j.issn.1006-7051.2003.03.013.

    WANG X G, SHEN L J. The state-of-the-arts of industrial detonators [J]. Engineering Blasting, 2003, 9(3): 52–57. DOI: 10.3969/j.issn.1006-7051.2003.03.013.
    [2] 颜景龙. 中国电子雷管技术与应用 [J]. 中国工程科学, 2015, 17(1): 36–41. DOI: 10.3969/j.issn.1009-1742.2015.01.005.

    YAN J L. Technology and application of Chinese electronic detonator [J]. Engineering Sciences, 2015, 17(1): 36–41. DOI: 10.3969/j.issn.1009-1742.2015.01.005.
    [3] HASHEMI A S, KATSABANIS P. The effect of stress wave interaction and delay timing on blast-induced rock damage and fragmentation [J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2327–2346. DOI: 10.1007/s00603-019-02043-9.
    [4] LENG Z D, SUN J S, LU W B, et al. Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation [J]. Computers and Geotechnics, 2021, 129: 103873. DOI: 10.1016/j.compgeo.2020.103873.
    [5] SINGH P K, ROY M P, PASWAN R K, et al. Blast vibration effects in an underground mine caused by open-pit mining [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 79–88. DOI: 10.1016/j.ijrmms.2015.09.009.
    [6] FU H X, WONG L N Y, ZHAO Y, et al. Comparison of excavation damage zones resulting from blasting with nonel detonators and blasting with electronic detonators [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 809–816. DOI: 10.1007/s00603-013-0419-2.
    [7] 赵勇, 傅洪贤, 谢晋水, 等. 电子雷管在隧道钻爆法开挖中降振试验研究 [J]. 工程爆破, 2012, 18(1): 82–85. DOI: 10.3969/j.issn.1006-7051.2012.01.022.

    ZHAO Y, FU H X, XIE J S, et al. Experimental research on decreasing blasting vibration velocity by digital detonator [J]. Engineering Blasting, 2012, 18(1): 82–85. DOI: 10.3969/j.issn.1006-7051.2012.01.022.
    [8] 曹杨, 王旭春, 余志伟, 等. 隧道近距下穿老旧建筑物爆破振动监测及减振技术研究 [J]. 施工技术, 2017, 46(11): 82–85. DOI: 10.7672/sgjs2017110082.

    CAO Y, WANG X C, YU Z W, et al. Blasting vibration monitoring and reduction technology of tunnel under-passing aging buildings in a short distance [J]. Construction Technology, 2017, 46(11): 82–85. DOI: 10.7672/sgjs2017110082.
    [9] 傅洪贤, 沈周, 赵勇, 等. 隧道电子雷管爆破降振技术试验研究 [J]. 岩石力学与工程学报, 2012, 31(3): 597–603. DOI: 10.3969/j.issn.1000-6915.2012.03.018.

    FU H X, SHEN Z, ZHAO Y, et al. Experimental study of decreasing vibration technology of tunnel blasting with digital detonator [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 597–603. DOI: 10.3969/j.issn.1000-6915.2012.03.018.
    [10] 管晓明, 傅洪贤, 王梦恕. 隧道近距下穿山坡楼房爆破振动测试研究 [J]. 岩土力学, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027.

    GUAN X M, FU H X, WANG M S. Blasting vibration characteristics monitoring of tunnel under-passing hillside buildings in short-distance [J]. Rock and Soil Mechanics, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027.
    [11] 程围峰, 王振宇, 陈银鲁, 等. 引水隧洞电子雷管爆破震动特征研究 [J]. 铁道工程学报, 2014(5): 79–84. DOI: 10.3969/j.issn.1006-2106.2014.05.015.

    CHENG W F, WANG Z Y, CHEN Y L, et al. Research on the vibration characteristic of electronic detonator blasting for water diversion tunnel [J]. Journal of Railway Engineering Society, 2014(5): 79–84. DOI: 10.3969/j.issn.1006-2106.2014.05.015.
    [12] 马晓明, 王振宇, 陈银鲁, 等. 精确微差爆破震动能量分布特征分析 [J]. 解放军理工大学学报(自然科学版), 2012, 13(4): 449–454. DOI: 10.3969/j.issn.1009-3443.2012.04.018.

    MA X M, WANG Z Y, CHEN Y L, et al. Analysis of energy distribution of accurate millisecond blasting vibration [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(4): 449–454. DOI: 10.3969/j.issn.1009-3443.2012.04.018.
    [13] 田振农, 孟祥栋, 王国欣. 城区隧道电子雷管起爆错相减震机理分析 [J]. 振动与冲击, 2012, 31(21): 108–111. DOI: 10.3969/j.issn.1000-3835.2012.21.022.

    TIAN Z N, MENG X D, WANG G X. Mechanism analysis of fault-phase vibration reduction for tunnel blasting initiated by electronic detonators in city area [J]. Journal of Vibration and Shock, 2012, 31(21): 108–111. DOI: 10.3969/j.issn.1000-3835.2012.21.022.
    [14] ANDERSON D A. A method site-specific prediction and control of ground vibration from blasting [C]// Proceedings of the First Mini-symposium on Explosives and Blasting Research, 1985: 28−42.
    [15] HINZEN K G. Modelling of blast vibrations [J]. International Journal of Rock Mechanics and Mining Sciences, 1988, 25(6): 439–445. DOI: 10.1016/0148-9062(88)90984-9.
    [16] AZIZABADI H R M, MANSOURI H, FOUCHÉ O. Coupling of two methods, waveform superposition and numerical, to model blast vibration effect on slope stability in jointed rock masses [J]. Computers and Geotechnics, 2014, 61: 42–49. DOI: 10.1016/j.compgeo.2014.04.008.
    [17] 龚敏, 吴昊骏, 孟祥栋, 等. 密集建筑物下隧道开挖微振控制爆破方法与振动分析 [J]. 爆炸与冲击, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09.

    GONG M, WU H J, MENG X D, et al. A precisely-controlled blasting method and vibration analysis for excavation under dense buildings [J]. Explosion and Shock Waves, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09.
    [18] 吴昊骏, 龚敏. 基于雷管实际延时范围的逐孔爆破振动合成计算与应用 [J]. 爆炸与冲击, 2019, 39(2): 151–161. DOI: 10.11883/bzycj-2017-0415.

    WU H J, GONG M. Calculation and application of hole by hole blasting vibration superposition based on measured delay times of detonators [J]. Explosion and Shock Waves, 2019, 39(2): 151–161. DOI: 10.11883/bzycj-2017-0415.
    [19] IWANO K, HASHIBA K, NAGAE J, et al. Reduction of tunnel blasting induced ground vibrations using advanced electronic detonators [J]. Tunnelling and Underground Space Technology, 2020, 105: 103556. DOI: 10.1016/j.tust.2020.103556.
    [20] 龚敏, 吴昊骏. 隧道爆破现场高速图像采集与精确控制爆破参数研究 [J]. 爆炸与冲击, 2019, 39(5): 3–12. DOI: 10.11883/bzycj-2018-0319.

    GONG M, WU H J. High-speed photography image acquisition system in tunnel blasting and parameters study on precisely controlled blasting [J]. Explosion and Shock Waves, 2019, 39(5): 3–12. DOI: 10.11883/bzycj-2018-0319.
  • 期刊类型引用(10)

    1. 杨赛群,葛立芳,李洪伟,夏治园. 地应力影响下的五孔掏槽爆破岩石损伤效应研究. 火工品. 2025(01): 89-96 . 百度学术
    2. 汤智力. 隧道楔形掏槽爆破延期时间优化与现场试验研究. 施工技术(中英文). 2024(24): 25-30 . 百度学术
    3. 冷振东,范勇,涂书芳,周桂松,郭一鸣. 电子雷管起爆技术研究进展与发展建议. 中国工程科学. 2023(01): 142-154 . 百度学术
    4. 吴健春,高宇璠,全明威,聂启强,陈春,傅洪贤. 隧道电子雷管爆破近区振动测试研究. 云南水力发电. 2023(08): 34-39 . 百度学术
    5. 李成孝,杨仁树,王雁冰,徐斌,左进京,谢平. 基于数值模拟的岩石巷道深孔分段装药掏槽爆破研究. 煤炭科学技术. 2023(09): 100-111 . 百度学术
    6. 刘树国. 数码雷管对隧道爆破工程造价的影响研究. 铁道建筑技术. 2023(10): 180-183 . 百度学术
    7. 刘翔宇,龚敏,杨仁树,吴昊骏,王思杰. 基于蒙特卡洛的电子雷管延期误差对隧道爆破振动影响研究. 振动与冲击. 2023(23): 192-198 . 百度学术
    8. 项荣军,刘传鹏,李胜林,凌天龙. 隧道内部爆破振动传播规律与降振技术研究. 爆破. 2023(04): 82-88+200 . 百度学术
    9. 孟彪,贾世杰,赵国强. 精确延时破岩机理综述. 科技创新与应用. 2022(10): 97-101 . 百度学术
    10. 陈之兼,王铭锋,张阳阳. 电子雷管在某井下铁矿应用中存在的问题及对策. 煤矿爆破. 2022(03): 35-38 . 百度学术

    其他类型引用(3)

  • 加载中
图(17)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  642
  • PDF下载量:  83
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回