自由面数量对水下钻孔爆破振动信号能量分布及衰减规律的影响

马晨阳 吴立 孙苗

马晨阳, 吴立, 孙苗. 自由面数量对水下钻孔爆破振动信号能量分布及衰减规律的影响[J]. 爆炸与冲击, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436
引用本文: 马晨阳, 吴立, 孙苗. 自由面数量对水下钻孔爆破振动信号能量分布及衰减规律的影响[J]. 爆炸与冲击, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436
MA Chenyang, WU Li, SUN Miao. Influence of free surface numbers on the energy distribution and attenuation of vibration signals of underwater drilling blasting[J]. Explosion And Shock Waves, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436
Citation: MA Chenyang, WU Li, SUN Miao. Influence of free surface numbers on the energy distribution and attenuation of vibration signals of underwater drilling blasting[J]. Explosion And Shock Waves, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436

自由面数量对水下钻孔爆破振动信号能量分布及衰减规律的影响

doi: 10.11883/bzycj-2020-0436
基金项目: 国家自然科学基金(41672260)
详细信息
    作者简介:

    马晨阳(1990- ),男,博士研究生,524035683@qq.com

    通讯作者:

    吴 立(1963- ),男,博士,教授,lwu@cug.edu.cn

  • 中图分类号: O389; TD231

Influence of free surface numbers on the energy distribution and attenuation of vibration signals of underwater drilling blasting

  • 摘要: 针对自由面不仅影响爆破效果还影响爆破振动效应的问题,提出从能量角度探索自由面对水下爆破振动衰减规律的影响。以三峡大坝至葛洲坝水利枢纽河段水下钻孔爆破地震波现场监测数据为基础,结合SPH-FEM数值模拟技术和小波时频能量分析方法,对不同自由面数量的爆破振动信号的总能量、各频带间的能量分布特征及振动衰减规律进行了研究。结果表明:水下钻孔爆破具有低主频、短持时、快衰减的特点,爆破主频带主要集中在15.625~31.250 Hz;受单一自由面限制的水下开槽爆破,监测信号的爆炸能量主要以振动形式消耗,单自由面比振动能为13.14 mm2/(kg·s2),随着后续开挖爆破自由面数量的增加,双自由面和三自由面的比振动能分别降低至1.36和0.28 mm2/(kg·s2),频带质点峰值振动速度分别降低65%和37%,能量更多用于破碎和抛掷岩体,水下爆破振动主频由低频向高频带(31.25~62.50 Hz)发展。因此,在水下控制爆破设计时,需要考虑自由面数量对振动能量分布和衰减规律的影响,并利用这个特征,确定各段的控制药量,减少对周边建构物的共振危害。
  • 图  1  爆破测振系统及测点布设

    Figure  1.  Diagrams of blasting vibration measuring system and measuring point layout

    图  2  炮孔分布及自由面

    Figure  2.  Schematic diagrams of blast hole distribution and free surface

    图  3  实测爆破振动信号的垂向速度曲线

    Figure  3.  Vertical velocity curves of monitored blasting vibration signals

    图  4  信号1-1在不同频带的爆破振动分量

    Figure  4.  Blasting vibration components of signal 1-1 at different frequency bands

    图  5  不同频带爆破振动信号的PPV分布

    Figure  5.  PPV’s distributions of blasting vibration signals at different frequency bands

    图  6  爆破振动信号各频带能量分布

    Figure  6.  Energy distributions of blasting vibration signals at different frequency bands

    图  7  水下爆破的三维数值模型

    Figure  7.  The three-dimensional numerical model for underwater blasting

    图  8  不同段爆破炮孔近区的破碎过程

    Figure  8.  The crushi​ng process near the hole of different blasting sections

    图  9  不同自由面PPV随爆心距的衰减

    Figure  9.  PPV attenuation of different free surfaces with detonation center distances

    图  10  不同自由面爆破振动萨氏公式的非线性回归

    Figure  10.  Non-linear regression of different free-surface blasting vibration formulas

    表  1  爆破振动信号的能量分布

    Table  1.   Energy distribution of blasting vibration signals

    频带频率/Hz频带能量/(mm2·s−2能量占比/%
    1-11-22-12-21-11-22-12-2
    d80~7.81252.62870.10870.86330.3083 0.100.040.510.919
    d77.8125~15.62524.44710.16312.53920.4864 0.930.061.501.450
    d615.625~31.252147.6642194.0952117.311017.400681.7071.4069.3051.890
    d531.25~62.5312.817764.616837.800211.142511.9023.7722.3333.228
    d462.5~125105.41178.97088.12544.1473 4.013.304.8012.368
    d3125~25026.28723.26212.60690.0377 1.001.201.540.112
    d2250~5007.09750.57090.02880.0103 0.270.210.0170.031
    d1500~10002.36580.00540.00050.0003 0.090.020.0030.001
    总和2628.72271.79169.2833.53
    下载: 导出CSV

    表  2  岩石的HJC模型主要参数

    Table  2.   HJC model parameters of rock

    密度
    ρ0/(g·cm−3
    剪切模量
    G/GPa
    黏性常数
    A
    压力强化系数
    B
    应变率系数
    C
    硬化指数
    N
    静态单轴抗压
    强度fc/MPa
    最大拉应力
    T/MPa
    归一化最强值
    Sf,max
    2.67.420.32.010.009 70.711311.311
    损伤常数
    D1
    损伤常数
    D2
    压力常数
    K1
    压力常数
    K2
    压力常数
    K3
    压实应变
    μlock
    压碎体压力
    pcrush/MPa
    压实应力
    plock/MPa
    破碎体积应变
    μcrush
    0.410.085−0.1710.2080.1388000.004
    下载: 导出CSV
  • [1] 李洪涛, 杨兴国, 舒大强, 等. 不同爆源形式的爆破地震能量分布特征 [J]. 四川大学学报(工程科学版), 2010, 42(1): 30–34. DOI: 10.15961/j.jsuese.2010.01.025.

    LI H T, YANG X G, SHU D Q, et al. Study on energy distribution characteristics of seismic waves induced by different forms of blasting resource [J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(1): 30–34. DOI: 10.15961/j.jsuese.2010.01.025.
    [2] 吴从师, 徐荣文, 张庆彬. 自由面对爆破振动信号能量分布特征的影响 [J]. 爆炸与冲击, 2017, 37(6): 907–914. DOI: 10.11883/1001-1455(2017)06-0907-08.

    WU C S, XU R W, ZHANG Q B. Influence of free surface on energy distribution characteristics of blasting vibration [J]. Explosion and Shock Waves, 2017, 37(6): 907–914. DOI: 10.11883/1001-1455(2017)06-0907-08.
    [3] 汪万红, 冷振东, 卢文波, 等. 临空面数量对爆破振动特征的影响研究 [J]. 矿冶工程, 2018, 38(6): 17–22. DOI: 10.3969/j.issn.0253-6099.2018.06.004.

    WANG W H, LENG Z D, LU W B, et al. Effect of free face numbers on blasting vibration in rock blasting [J]. Mining and Metallurgical Engineering, 2018, 38(6): 17–22. DOI: 10.3969/j.issn.0253-6099.2018.06.004.
    [4] 杨建华, 卢文波, 严鹏, 等. 全断面开挖爆破产生的自由面对振动频率的影响研究 [J]. 振动与冲击, 2016, 35(7): 193–197. DOI: 10.13465/j.cnki.jvs.2016.07.029.

    YANG J H, LU W B, YAN P, et al. Influences of blast-created free surfaces on blasting vibration frequencies during full-face excavation [J]. Journal of Vibration and Shock, 2016, 35(7): 193–197. DOI: 10.13465/j.cnki.jvs.2016.07.029.
    [5] 陈星明, 肖正学, 蒲传金. 自由面对爆破地震强度影响的试验研究 [J]. 爆破, 2009, 26(4): 38–40, 56. DOI: 10.3963/j.issn.1001-487X.2009.04.010.

    CHEN X M, XIAO Z X, PU C J. Experimental study on influence blasting earthquake strength to free faces [J]. Blasting, 2009, 26(4): 38–40, 56. DOI: 10.3963/j.issn.1001-487X.2009.04.010.
    [6] 马瑞恒, 时党勇. 爆破振动信号的时频分析 [J]. 振动与冲击, 2005, 24(4): 92–95. DOI: 10.3969/j.issn.1000-3835.2005.04.026.

    MA R H, SHI D Y. Time-frequency analysis of blasting vibration signal [J]. Journal of Vibration and Shock, 2005, 24(4): 92–95. DOI: 10.3969/j.issn.1000-3835.2005.04.026.
    [7] 孙苗, 吴立, 周玉纯, 等. 水下钻孔爆破地震波信号的最优降噪光滑模型 [J]. 华南理工大学学报(自然科学版), 2019, 47(8): 31–37. DOI: 10.12141/j.issn.1000-565X.180601.

    SUN M, WU L, ZHOU Y C, et al. Optimal denoising smooth model of underwater drilling blasting seismic wave signal [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 31–37. DOI: 10.12141/j.issn.1000-565X.180601.
    [8] 孙苗, 吴立, 袁青, 等. 基于CEEMDAN的爆破地震波信号时频分析 [J]. 华南理工大学学报(自然科学版), 2020, 48(3): 76–82. DOI: 10.12141/j.issn.1000-565X.190179.

    SUN M, WU L, YANG Q, et al. Time-Frequency analysis of blasting seismic signal based on CEEMDAN [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(3): 76–82. DOI: 10.12141/j.issn.1000-565X.190179.
    [9] 李夕兵, 凌同华. 单段与多段微差爆破地震的反应谱特征分析 [J]. 岩石力学与工程学报, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002.

    LI X B, LING T H. Response spectrum analysis of ground vibration induced by single deck and multi-deck blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002.
    [10] 张声辉, 刘连生, 钟清亮, 等. 露天边坡爆破地震波能量分布特征研究 [J]. 振动与冲击, 2019, 38(7): 224–232. DOI: 10.13465/j.cnki.jvs.2019.07.032.

    ZHANG S H, LIU L S, ZHONG Q L, et al. Energy distribution characteristics of blast seismic wave on open pit slope [J]. Journal of Vibration and Shock, 2019, 38(7): 224–232. DOI: 10.13465/j.cnki.jvs.2019.07.032.
    [11] 陈江海, 顾文彬, 王振雄, 等. 洋山港水下多孔爆破陆地和水底震动实地测试与分析 [J]. 振动与冲击, 2016, 35(24): 207–212,220. DOI: 10.13465/j.cnki.jvs.2016.24.033.

    CHEN J H, GU W B, WANG Z X, et al. Field measurement and signal analysis of land and water bottom vibrations induced by underwater multi-hole blasting at Yangshan Port [J]. Journal of Vibration and Shock, 2016, 35(24): 207–212,220. DOI: 10.13465/j.cnki.jvs.2016.24.033.
    [12] 中国生, 房营光, 徐国元. 基于小波变换的建(构)筑物爆破振动效应评估研究 [J]. 振动与冲击, 2008, 27(8): 121–124,129. DOI: 10.13465/j.cnki.jvs.2008.08.038.

    ZHONG G S, FANG Y G, XU G Y. Study on blasting vibration effect assessment of structure based on wavelet transform [J]. Journal of Vibration and Shock, 2008, 27(8): 121–124,129. DOI: 10.13465/j.cnki.jvs.2008.08.038.
    [13] 凌同华, 李夕兵, 王桂尧, 等. 爆心距对爆破振动信号频带能量分布的影响 [J]. 重庆建筑大学学报, 2007, 29(2): 53–55. DOI: 10.11835/j.issn.1674-4764.2007.02.013.

    LING T H, LI X B, WANG G Y, et al. Influence of distance from blasting center on frequency bands energy distribution of blasting vibration signals [J]. Journal of Chongqing Jianzhu University, 2007, 29(2): 53–55. DOI: 10.11835/j.issn.1674-4764.2007.02.013.
    [14] 李夕兵, 凌同华, 张义平. 爆破震动信号分析理论与技术 [M]. 北京: 科学出版社, 2009: 92−94.
    [15] 胡英国, 卢文波, 陈明, 等. SPH-FEM耦合爆破损伤分析方法的实现与验证 [J]. 岩石力学与工程学报, 2015, 34(S1): 2740–2748. DOI: 10.13722/j.cnki.jrme.2014.0104.

    HU Y G, LU W B, CHEN M, et al. Implementation and verification of SPH-FEM coupling blasting damage analytical method [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2740–2748. DOI: 10.13722/j.cnki.jrme.2014.0104.
    [16] 冷振东, 卢文波, 胡浩然, 等. 爆生自由面对边坡微差爆破诱发振动峰值的影响 [J]. 岩石力学与工程学报, 2016, 35(9): 1815–1822. DOI: 10.13722/j.cnki.jrme.2015.1499.

    LENG Z D, LU W B, HU H R, et al. Studies on influence of blast-created free face on ground vibration in slope blasts with millisecond-delays [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1815–1822. DOI: 10.13722/j.cnki.jrme.2015.1499.
    [17] 彭亚雄. 水下钻孔爆破地震波与水击波协同作用下桥墩动力响应特征研究 [D]. 武汉: 中国地质大学(武汉), 2018: 83−84.
    [18] 李建阳, 李永池, 高光发. 混凝土水下径向不耦合爆破特性研究 [J]. 工程爆破, 2010, 16(1): 1–5. DOI: 10.3969/j.issn.1006-7051.2010.01.001.

    LI J Y, LI Y C, GAO G F. Study on blasting characteristics of underwater concrete with radial decoupling charge [J]. Engineering Blasting, 2010, 16(1): 1–5. DOI: 10.3969/j.issn.1006-7051.2010.01.001.
    [19] 鞠杨, 环小丰, 宋振铎, 等. 损伤围岩中爆炸应力波动的数值模拟 [J]. 爆炸与冲击, 2007, 27(2): 136–142. DOI: 10.11883/1001-1455(2007)02-0136-07.

    JU Y, HUAN X F, SONG Z D, et al. Numerical analyses of blast wave stress propagation and damage evolution in rock masses [J]. Explosion and Shock Waves, 2007, 27(2): 136–142. DOI: 10.11883/1001-1455(2007)02-0136-07.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  214
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-04-15
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回