爆炸加载下金属柱壳破片软回收技术研究

张世文 李英雷 陈艳 但加坤 郭昭亮 刘明涛

张世文, 李英雷, 陈艳, 但加坤, 郭昭亮, 刘明涛. 爆炸加载下金属柱壳破片软回收技术研究[J]. 爆炸与冲击, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
引用本文: 张世文, 李英雷, 陈艳, 但加坤, 郭昭亮, 刘明涛. 爆炸加载下金属柱壳破片软回收技术研究[J]. 爆炸与冲击, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
Citation: ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449

爆炸加载下金属柱壳破片软回收技术研究

doi: 10.11883/bzycj-2020-0449
基金项目: 国家自然科学基金(11932018,12072332)
详细信息
    作者简介:

    张世文(1971- ),男,博士,研究员,zhangswxueshu@163.com

    通讯作者:

    陈 艳(1993- ),女,硕士,研究实习员,1028702777@qq.com

  • 中图分类号: O347.3

Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading

  • 摘要: 针对爆炸加载下金属柱壳膨胀断裂破片软回收的研究需求,本文通过理论分析和初步的数值模拟设计了由低密度聚氨酯泡沫与水介质为主体的回收装置。与传统单一材料为主的回收装置相比,该回收装置既能在破片高速阶段将低阻抗聚氨酯泡沫对破片的冲击压力减小到约为水对破片冲击压力的1/3,又使破片速度全程持续地较大幅度衰减,还能在破片低速阶段又能充分利用水介质密度大的优势,减小以聚氨酯泡沫单一材料为主的回收装置尺寸。依托该装置开展了炸药加载下304不锈钢柱壳膨胀断裂回收实验。通过测量回收池外壁速度、检查实验后的回收池外观,发现回收池池壁和底部完好,可以重复使用;通过对回收破片称重统计,破片回收率超过85%,破片内外界面辨识度高,破片表面车刀纹清晰可见,内部可见多条未贯穿的裂纹。表明该回收装置对破片的冲击损伤显著降低。根据破片断口和表面信息,推测了破片在金属柱壳的大致位置。本文最后初步给出了回收破片的平均厚度及质量分布等相关信息的统计结果。
  • 图  1  回收池整体布局示意图(单位:mm)

    Figure  1.  Overall layout of recovery tank (unit: mm)

    图  2  破片撞击不同介质组合的计算模型

    Figure  2.  Simulation model of flyer impacting on different media combinations

    图  3  钢破片速度衰减与不同介质组合中穿透深度关系曲线

    Figure  3.  Relation curves between speed attenuation of steel flyer and penetration depth in different media combinations

    图  4  聚氨酯泡沫桶

    Figure  4.  Polyurethane foam tank

    图  5  实验装置放入聚氨酯泡沫桶

    Figure  5.  Experimental device is put into polyurethane foam tank

    图  6  四个测点速度曲线

    Figure  6.  Velocities of four measuring points

    图  7  3号测点速度位移时间曲线

    Figure  7.  Velocity displacement-time curves of measuring point 3

    图  8  回收池侧壁和底部状态

    Figure  8.  Status of wall and bottom of recovery tank

    图  9  回收破片形貌1

    Figure  9.  Morphology of recovered fragments 1

    图  10  回收破片形貌2

    Figure  10.  Morphology of recovered fragments 2

    图  11  不同类型的回收破片

    Figure  11.  Different types of recovered fragments

    图  12  回收破片质量、厚度和内外界面宽度统计

    Figure  12.  Statistics of mass, thickness and inner and outer interface width of recovered fragments

    图  13  不同形状破片在金属壳体的位置

    Figure  13.  Position of fragments with different shapes in metal cylindrical shell

    表  1  不同材料的冲击雨贡纽参数

    Table  1.   Shock Hugoniot parameters of different materials

    材料ρ/(g·cm−3c0/(km·s−1λ
    [16]1.01.481.75
    石蜡[16]0.9182.9081.56
    聚氨酯泡沫[17]0.3210.71.13
    0.160.321.15
    泡沫碳[17]0.480.261.18
    0.560.361.22
    聚苯乙烯泡沫[17]0.2−0.005*1.245
    0.15−0.005*1.414
    0.1有实验,无拟合值
     注: *数据可靠性存疑。
    下载: 导出CSV

    表  2  水、石蜡等软材料对不同速度不锈钢破片产生的冲击压力

    Table  2.   Impact pressure of water, paraffin and other soft materials on stainless steel fragments

    材料ρ/(g·cm−3冲击压力/GPa
    v=1.8 km/sv=2.0 km/s
    石蜡0.9186.767.74
    1.05.216.09
    泡沫碳0.481.692.05
    聚氨酯泡沫Ⅰ0.160.600.73
    聚氨酯泡沫Ⅱ0.3211.391.66
    下载: 导出CSV
  • [1] 卢秋虹, 王宁, 范诚, 等. 壁厚对HR2钢柱壳爆轰加载下膨胀断裂行为的影响 [J]. 材料研究学报, 2020, 34(4): 241–246. DOI: 10.11901/1005.3093.2019.177.

    LU Q H, WANG N, FAN C, et al. Effect of shell thickness on expanding fracture behavior of HR2 steel cylinders under explosive loading [J]. Chinese Journal of Materials Research, 2020, 34(4): 241–246. DOI: 10.11901/1005.3093.2019.177.
    [2] 禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.
    [3] HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002.
    [4] HIROE T, FUJIWARA K, HATA H, et al. Explosively driven expansion and fragmentation behavior for cylinders, spheres and rings of 304 stainless steel [J]. Materials Science Forum, 2010, 638−642: 1035–1040. DOI: 10.4028/www.scientific.net/MSF.638-642.1035.
    [5] 马利, 胡洋, 辛健, 等. 圆柱形爆炸容器绝热剪切瞬态失效过程 [J]. 爆炸与冲击, 2012, 32(2): 136–142. DOI: 10.11883/1001-1455(2012)02-0136-07.

    MA L, HU Y, XIN J, et al. Transient failure process of explosion containment vessels subjected to adiabatic shear [J]. Explosion and Shock Waves, 2012, 32(2): 136–142. DOI: 10.11883/1001-1455(2012)02-0136-07.
    [6] 朱文辉, 薛鸿陆, 刘仓理, 等. 爆炸容器承受内部加载的实验研究 [J]. 爆炸与冲击, 1995, 15(4): 374–381.

    ZHU W H, XUE H L, LIU C L, et al. Experimental study on the explosive chambers under internal blast loading [J]. Explosion and Shock Waves, 1995, 15(4): 374–381.
    [7] 张绍兴, 李翔宇, 丁亮亮, 等. 聚焦式战斗部破片轴向飞散控制技术 [J]. 高压物理学报, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.

    ZHANG S X, LI X Y, DING L L, et al. Axial dispersion control of focusing fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.
    [8] 史志鑫, 尹建平, 王志军, 等. 预制破片的形状对破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2017, 38(12): 31–35. DOI: 10.11809/scbgxb2017.12.008.

    SHI Z X, YIN J P, WANG Z J, et al. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 31–35. DOI: 10.11809/scbgxb2017.12.008.
    [9] 李翔宇, 卢芳云, 王志兵, 等. 可变形定向破片战斗部模型试验和数值模拟研究 [J]. 国防科技大学学报, 2006, 28(1): 121–124. DOI: 10.3969/j.issn.1001-2486.2006.01.027.

    LI X Y, LU F Y, WANG Z B, et al. A study of simulation and experiment of target-directed deformable warhead model [J]. Journal of National University of Defense Technology, 2006, 28(1): 121–124. DOI: 10.3969/j.issn.1001-2486.2006.01.027.
    [10] 胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理 [J]. 爆炸与冲击, 1995, 15(3): 254–258.

    HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for Ti-6AL-4V natural fragments [J]. Explosion and Shock Waves, 1995, 15(3): 254–258.
    [11] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [12] 汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
    [13] 宋桂飞, 李成国, 夏福君, 等. 回收战斗部破片的新型爆炸容器及应用 [J]. 爆炸与冲击, 2008, 28(4): 372–377. DOI: 10.11883/1001-1455(2008)04-0372-06.

    SONG G F, LI C G, XIA F J, et al. A new explosion vessel used to recover warhead fragments and its application [J]. Explosion and Shock Waves, 2008, 28(4): 372–377. DOI: 10.11883/1001-1455(2008)04-0372-06.
    [14] 陈志闯, 李伟兵, 朱建军, 等. 40CrMnSiB钢圆柱壳体膨胀断裂中间状态回收试验研究 [J]. 兵工学报, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.

    CHEN Z C, LI W B, ZHU J J, et al. Recovery experiment study of cylindrical 40CrMnSiB steel shell in intermediate phase of expanding fracture processes [J]. Acta Armamentarii, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.
    [15] GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [16] AUTODYN matsum_v6. 1_review [Z]. Concord: Century Dynamics Inc, 2010.
    [17] MARSH S P. Los Alamos series on dynamic material properties [M]. Berkeley: University of California Press, 1980.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  155
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回