当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究

葛高杨 马元 侯世卓 夏镇娟 马虎 邓利 周长省

葛高杨, 马元, 侯世卓, 夏镇娟, 马虎, 邓利, 周长省. 当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究[J]. 爆炸与冲击, 2021, 41(11): 112102. doi: 10.11883/bzycj-2020-0465
引用本文: 葛高杨, 马元, 侯世卓, 夏镇娟, 马虎, 邓利, 周长省. 当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究[J]. 爆炸与冲击, 2021, 41(11): 112102. doi: 10.11883/bzycj-2020-0465
GE Gaoyang, MA Yuan, HOU Shizhuo, XIA Zhenjuan, MA Hu, DENG Li, ZHOU Changsheng. Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine[J]. Explosion And Shock Waves, 2021, 41(11): 112102. doi: 10.11883/bzycj-2020-0465
Citation: GE Gaoyang, MA Yuan, HOU Shizhuo, XIA Zhenjuan, MA Hu, DENG Li, ZHOU Changsheng. Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine[J]. Explosion And Shock Waves, 2021, 41(11): 112102. doi: 10.11883/bzycj-2020-0465

当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究

doi: 10.11883/bzycj-2020-0465
基金项目: 国家自然科学基金(12072163, 5210060296, 11802134);中国博士后科学基金(2020M681616);国防科技重点实验室基金(HTKJ2020KL011004-1)
详细信息
    作者简介:

    葛高杨(1991- ),男,博士研究生,gayank@163.com

    通讯作者:

    马 虎(1986-  ),男,博士,副教授,mahuokok@163.com

  • 中图分类号: O381;V235.22

Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine

  • 摘要: 为了研究当量比对汽油燃料两相旋转爆轰发动机工作特性的影响,开展了以高总温空气为氧化剂的气液两相旋转爆轰实验研究。旋转爆轰发动机环形燃烧室外径、内径和长度分别为202、166和155 mm。汽油和高温空气采用高压雾化喷嘴与环缝对撞喷注的方式混合,以此提高推进剂的掺混效果与活性,采用预爆轰管作为点火装置。实验通过改变汽油质量流量改变推进剂当量比,并基于燃烧室内测得的高频动态压力和平均静压,对气液两相旋转爆轰波的传播模态和传播特性以及发动机的工作特性进行了详细分析。实验结果表明:在当量比为0.79~1.25时,燃烧室内均实现了旋转爆轰波的连续自持传播,且随着当量比的增加,爆轰波传播模态从双波对撞/单波的混合模态转变为单波模态;降低当量比至0.61~0.66,爆轰波传播稳定性变差,传播模态表现为间断爆轰以及零星爆轰;进一步降低当量比至0.53,爆轰波起爆失败。此外,燃烧室平均绝对压力与爆轰波平均传播频率均随着当量比的增加呈先增大后减小的趋势,极大值出现在当量比1.19附近。在此工况下获得了最佳实验结果,旋转爆轰波的平均传播频率为1 900.9 Hz,平均传播速度为1 110.8 m/s,与高频压力信号经快速傅里叶变换得到的主频基本一致,爆轰波传播速度存在严重亏损。
  • 图  1  实验系统

    Figure  1.  Schematic diagram of the experimental system

    图  2  两相旋转爆轰发动机

    Figure  2.  Two-phase rotating detonation engine

    图  3  喷注结构以及传感器分布

    Figure  3.  Schematic diagram of injection configuration and sensor instrumentation

    图  4  实验时序

    Figure  4.  Schematic diagram of experimental time sequence

    图  5  工况5的压力曲线

    Figure  5.  Pressure curves in case 5

    图  6  工况5的RDE起始阶段

    Figure  6.  Initiation stage of RDE in case 5

    图  7  工况5的RDE熄火阶段

    Figure  7.  Flameout stage of RDE in case 5

    图  8  工况4双波对撞点位于P2和P4之间的局部压力分布

    Figure  8.  Local pressure distributions of two-wave collision point locating between P2 and P4 in case 4

    图  9  工况4模态转变过程中的局部压力分布

    Figure  9.  Local pressure distributions during mode transition in case 4

    图  10  工况8的局部压力分布

    Figure  10.  Local pressure distributions in case 8

    图  11  工况4的FFT结果

    Figure  11.  FFT results in case 4

    图  12  工况4的STFT结果

    Figure  12.  STFT results in case 4

    图  13  工况4的爆轰波传播速度

    Figure  13.  Propagation velocities of detonation wave in case 4

    图  14  工况8的FFT结果

    Figure  14.  FFT results in case 8

    图  15  工况8的STFT结果

    Figure  15.  STFT results in case 8

    图  16  工况8的爆轰波传播速度

    Figure  16.  Propagation velocities of detonation wave in case 8

    图  17  燃烧室绝对压力和爆轰波传播频率随当量比的分布

    Figure  17.  Distributions of absolute pressure in combustor and propagation frequency of detonation wave with equivalent ratio

    表  1  实验工况

    Table  1.   Experimental conditions

    工况当量比空气总温/K空气流量/(g·s−1汽油流量/(g·s−1传播频率/Hz传播模态
    10.53713.01 110.038.4起爆失败
    20.61713.01 110.044.21 452.0零星爆轰
    30.66713.01 110.047.91 521.7间断爆轰
    40.79713.01 110.057.31 613.7混合模态
    50.84713.01 110.062.41 818.2混合模态
    60.97713.01 110.070.31 827.3混合模态
    71.06713.01 110.076.31 849.1单波
    81.19713.01 110.085.71 900.9单波
    91.25713.01 110.090.61 878.4单波
    下载: 导出CSV
  • [1] BYKOVSKII F A, MITROFANOV V V, VEDERNIKOV E F. Continuous detonation combustion of fuel-air mixtures [J]. Combustion, Explosion and Shock Waves, 1997, 33(3): 344–353. DOI: 10.1007/BF02671875.
    [2] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures [J]. Combustion, Explosion and Shock Waves, 2006, 42(4): 463–471. DOI: 10.1007/s10573-006-0076-9.
    [3] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations [J]. Journal of Propulsion and Power, 2006, 22(6): 1204–1216. DOI: 10.2514/1.17656.
    [4] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Initiation of detonation of fuel-air mixtures in a flow-type annular combustor [J]. Combustion, Explosion, and Shock Waves, 2014, 50(2): 214–222. DOI: 10.1134/S0010508214020130.
    [5] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of a heterogeneous kerosene-air mixture with addition of hydrogen [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 371–373. DOI: 10.1134/S0010508216030187.
    [6] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous detonation of the liquid kerosene-air mixture with addition of hydrogen or syngas [J]. Combustion, Explosion, and Shock Waves, 2019, 55(5): 589–598. DOI: 10.1134/S0010508219050101.
    [7] FROLOV S M, AKSENOV V S, IVANOV V S, et al. Continuous detonation combustion of ternary “hydrogen-liquid propane-air” mixture in annular combustor [J]. International Journal of Hydrogen Energy, 2017, 42(26): 16808–16820. DOI: 10.1016/j.ijhydene.2017.05.138.
    [8] KINDRACKI J. Experimental studies of kerosene injection into a model of a detonation chamber [J]. Journal of Power Technologies, 2012, 92(2): 80–89.
    [9] KINDRACKI J. Study of detonation initiation in kerosene-oxidizer mixtures in short tubes [J]. Shock Waves, 2014, 24(6): 603–618. DOI: 10.1007/s00193-014-0519-2.
    [10] KINDRACKI J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures [J]. Aerospace Science and Technology, 2015, 43: 445–453. DOI: 10.1016/j.ast.2015.04.006.
    [11] LIU Y S, WANG Y H, LI Y S, et al. Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine [J]. Chinese Journal of Aeronautics, 2015, 28(3): 669–675. DOI: 10.1016/j.cja.2015.03.006.
    [12] XIE Q F, WEN H C, LI W H, et al. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition [J]. Energy, 2018, 151: 408–419. DOI: 10.1016/j.energy.2018.03.062.
    [13] LIN W, ZHOU J, LIU S J, et al. Experimental study on propagation mode of H2/Air continuously rotating detonation wave [J]. International Journal of Hydrogen Energy, 2015, 40(4): 1980–1993. DOI: 10.1016/j.ijhydene.2014.11.119.
    [14] 魏万里, 翁春生, 武郁文, 等. 氧化剂喷注面积对连续旋转爆轰波传播特性影响的实验研究 [J]. 兵工学报, 2018, 39(12): 2345–2353. DOI: 10.3969/j.issn.1000-1093.2018.12.008.

    WEI W L, WENG C S, WU Y W, et al. Experimental research on influence of oxidant injection area on the propagation characteristics of continuous rotating detonation wave [J]. Acta Armamentarii, 2018, 39(12): 2345–2353. DOI: 10.3969/j.issn.1000-1093.2018.12.008.
    [15] DENG L, MA H, XU C, et al. The feasibility of mode control in rotating detonation engine [J]. Applied Thermal Engineering, 2018, 129: 1538–1550. DOI: 10.1016/j.applthermaleng.2017.10.146.
    [16] 郑权, 翁春生, 白桥栋. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究 [J]. 推进技术, 2015, 36(6): 947–952. DOI: 10.13675/j.cnki.tjjs.2015.06.020.

    ZHENG Q, WENG C S, BAI Q D. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine [J]. Journal of Propulsion Technology, 2015, 36(6): 947–952. DOI: 10.13675/j.cnki.tjjs.2015.06.020.
    [17] 郑权, 李宝星, 翁春生, 等. 双波对撞模态下的液态燃料旋转爆轰发动机推力测试研究 [J]. 兵工学报, 2017, 38(4): 679–689. DOI: 10.3969/j.issn.1000-1093.2017.04.008.

    ZHENG Q, LI B X, WENG C S, et al. Thrust measurement of liquid-fueled rotating detonation engine under two-wave collision mode [J]. Acta Armamentarii, 2017, 38(4): 679–689. DOI: 10.3969/j.issn.1000-1093.2017.04.008.
    [18] 李宝星, 王中, 许桂阳, 等. 煤油燃料旋转爆轰波起爆与传播特性实验研究 [J]. 兵工学报, 2020, 41(7): 1339–1346. DOI: 10.3969/j.issn.1000-1093.2020.07.011.

    LI B X, WANG Z, XU G Y, et al. Experimental research on initiation and propagation characteristics of kerosene fuel rotating detonation wave [J]. Acta Armamentarii, 2020, 41(7): 1339–1346. DOI: 10.3969/j.issn.1000-1093.2020.07.011.
    [19] 王迪, 周进, 林志勇. 煤油两相连续旋转爆震燃烧室工作特性试验研究 [J]. 推进技术, 2017, 38(2): 471–480. DOI: 10.13675/j.cnki.tjjs.2017.02.028.

    WANG D, ZHOU J, LIN Z Y. Experimental investigation on operating characteristics of two-phase continuous rotating detonation combustor fueled by kerosene [J]. Journal of Propulsion Technology, 2017, 38(2): 471–480. DOI: 10.13675/j.cnki.tjjs.2017.02.028.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  217
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-03-25
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回