电磁加载下7075铝环的膨胀断裂模式转变研究

杨晨 刘明涛 汤铁钢 郭昭亮 范诚

杨晨, 刘明涛, 汤铁钢, 郭昭亮, 范诚. 电磁加载下7075铝环的膨胀断裂模式转变研究[J]. 爆炸与冲击, 2021, 41(3): 032201. doi: 10.11883/bzycj-2021-0005
引用本文: 杨晨, 刘明涛, 汤铁钢, 郭昭亮, 范诚. 电磁加载下7075铝环的膨胀断裂模式转变研究[J]. 爆炸与冲击, 2021, 41(3): 032201. doi: 10.11883/bzycj-2021-0005
YANG Chen, LIU Mingtao, TANG Tiegang, GUO Zhaoliang, FAN Cheng. Expansion fracture mode of 7075 aluminum ring under electromagnetic loading[J]. Explosion And Shock Waves, 2021, 41(3): 032201. doi: 10.11883/bzycj-2021-0005
Citation: YANG Chen, LIU Mingtao, TANG Tiegang, GUO Zhaoliang, FAN Cheng. Expansion fracture mode of 7075 aluminum ring under electromagnetic loading[J]. Explosion And Shock Waves, 2021, 41(3): 032201. doi: 10.11883/bzycj-2021-0005

电磁加载下7075铝环的膨胀断裂模式转变研究

doi: 10.11883/bzycj-2021-0005
基金项目: 国家自然科学基金(11602250)
详细信息
    作者简介:

    杨 晨(1993- ),男,硕士,296182603@qq.com

    通讯作者:

    汤铁钢(1974- ),男,研究员,ttg1974@163.com

  • 中图分类号: O346.1

Expansion fracture mode of 7075 aluminum ring under electromagnetic loading

  • 摘要: 利用电磁膨胀环实验技术,研究了7075铝环在2700~8700 s−1拉伸加载应变率下的断裂模式转变现象。实验结果表明:在低应变率下,铝环的断裂受最大正应力控制,发生拉伸断裂;在高应变率下,铝环的断裂受最大剪应力控制,发生剪切断裂;在中应变率下,铝环的断裂同时受最大正应力和最大剪应力控制,为拉伸和剪切同时存在的拉剪混合断裂模式;随着应变率的增加,铝环的破片数量呈先增加、再减小、最后增加的趋势,破片数量变化拐点与断裂模式转变点基本吻合。
  • 图  1  电磁膨胀环装置示意图

    Figure  1.  Schematic of electromagnetic expansion ring device

    图  2  电磁膨胀环实验装置

    Figure  2.  Electromagnetic expansion ring experimental device

    图  3  螺线圈中的电流历史曲线

    Figure  3.  Current history curves in the solenoid

    图  4  速度历史曲线

    Figure  4.  Velocities history curves

    图  5  7075铝环膨胀断裂后破片回收

    Figure  5.  Recycled fragmentations of 7075 aluminum ring expansion fracture

    图  6  拉伸断口和剪切断口的表面形态

    Figure  6.  The surface morphologies of tensile fracture and shear fracture

    图  7  断裂应变与应变率的关系

    Figure  7.  Relationships between failure strain and strain rate

    图  8  破片数量与应变率的关系

    Figure  8.  Relationships between number of fragments and strain rate

  • [1] FENG X X, KUMAR A M, HIRTH J P. Mixed mode I/III fracture toughness of 2034 aluminum alloys [J]. Acta Metallurgica et Materialia, 1993, 41(9): 2755–2764. DOI: 10.1016/0956-7151(93)90144-H.
    [2] LIU S, CHAO Y J, ZHU X K. Tensile-shear transition in mixed mode I/III fracture [J]. International Journal of Solids and Structures, 2004, 41(22−23): 6147–6172. DOI: 10.1016/j.ijsolstr.2004.04.044.
    [3] BOYCE B L, KRAMER S, BOSILJEVAC T R, et al. The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading [J]. International Journal of Fracture, 2016, 198(1−2): 5–100. DOI: 10.1007/s10704-016-0089-7.
    [4] OKAZAWA S, USAMI T. Plastic instability simulation of steel in tension [M] // ZHAO X L. Structural Failure and Plasticity. Amsterdam: Elsevier, 2000: 775−780.DOI: 10.1016/B978-008043875-7/50253-7.
    [5] XUE L, WIERZBICKI T. Numerical simulation of fracture mode transition in ductile plates [J]. International Journal of Solids and Structures, 2009, 46(6): 1423–1435. DOI: 10.1016/j.ijsolstr.2008.11.009.
    [6] 胡八一. 金属圆管在内部爆轰加载下的膨胀断裂机理研究[D]. 绵阳: 中国工程物理研究院研究生部, 1992: 20−53.

    HU B Y. Mechanism of expansion and rupture of metal pipe under internal detonation loading[D]. Mianyang: Graduate School of China Academy of Engineering Physics, 1992: 20−53.
    [7] 汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
    [8] 刘明涛, 汤铁钢, 胡海波, 等. 不同起爆方式下炸药驱动柱壳膨胀断裂的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 415–420. DOI: 10.11883/1001-1455(2014)04-0415-06.

    LIU M T, TANG T G, HU H B, et al. Numerical studies of explosion induced cylindrical shell fracture under different detonating modes [J]. Explosion and Shock Waves, 2014, 34(4): 415–420. DOI: 10.11883/1001-1455(2014)04-0415-06.
    [9] LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
    [10] 胡八一, 董庆东, 韩长生, 等. 内部爆轰加载下的钢管膨胀断裂研究 [J]. 爆炸与冲击, 1993, 13(1): 49–54.

    HU B Y, DONG Q D, HAN C S, et al. Studies of expansion and fracture of explosive-filled steel cylinders [J]. Explosion and Shock Waves, 1993, 13(1): 49–54.
    [11] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [12] 桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.

    GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading [J]. Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.
    [13] 种涛, 赵剑衡, 谭福利, 等. 电磁膨胀环实验设计的关键因素 [J]. 爆炸与冲击, 2013, 33(5): 544–550. DOI: 10.11883/1001-1455(2013)05-0544-07.

    CHONG T, ZHAO J H, TAN F L, et al. Key factors in design of electromagnetic ring experiment [J]. Explosion and Shock Waves, 2013, 33(5): 544–550. DOI: 10.11883/1001-1455(2013)05-0544-07.
    [14] 陈红. 电磁驱动金属膨胀环动态拉伸实验技术[D]. 宁波: 宁波大学, 2012: 12−14.

    CHEN H. Dynamic tension experimental technique of electromagneticall driven expanding metal ring[D]. Ningbo: Ningbo University, 2012: 12−14.
    [15] 刘明涛, 汤铁钢, 郭昭亮, 等. 膨胀环实验平台及其在材料动力学行为研究中的应用 [J]. 实验力学, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.

    LIU M T, TANG T G, GUO Z L, et al. Expanding ring experimental platform and its application in material dynamic mechanical behavior investigation [J]. Journal of Experimental Mechanics, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.
    [16] NIORDSON F L. A unit for testing materials at high strain rates [J]. Experimental Mechanics, 1965, 5(1): 29–32.
  • 加载中
图(8)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  206
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 修回日期:  2021-02-08
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回