中心点火火焰在药床中传播规律的试验研究

薛绍 陶如意 王浩 程申申

薛绍, 陶如意, 王浩, 程申申. 中心点火火焰在药床中传播规律的试验研究[J]. 爆炸与冲击, 2021, 41(11): 112101. doi: 10.11883/bzycj-2021-0030
引用本文: 薛绍, 陶如意, 王浩, 程申申. 中心点火火焰在药床中传播规律的试验研究[J]. 爆炸与冲击, 2021, 41(11): 112101. doi: 10.11883/bzycj-2021-0030
XUE Shao, TAO Ruyi, WANG Hao, CHENG Shenshen. Experimental research on the law of flame spreading in the charge bed of a central ignition tube[J]. Explosion And Shock Waves, 2021, 41(11): 112101. doi: 10.11883/bzycj-2021-0030
Citation: XUE Shao, TAO Ruyi, WANG Hao, CHENG Shenshen. Experimental research on the law of flame spreading in the charge bed of a central ignition tube[J]. Explosion And Shock Waves, 2021, 41(11): 112101. doi: 10.11883/bzycj-2021-0030

中心点火火焰在药床中传播规律的试验研究

doi: 10.11883/bzycj-2021-0030
详细信息
    作者简介:

    薛 绍(1991- ),男,博士研究生,xue18761686700@163.com

    通讯作者:

    陶如意(1978- ),女,博士,副教授,tao801801@163.com

  • 中图分类号: O381

Experimental research on the law of flame spreading in the charge bed of a central ignition tube

  • 摘要: 为了研究中心点火管火焰在药床中的传播规律,设计了可视化模拟试验平台,开展了不同点火药量、不同装药结构的中心点传火试验。采用高速图像采集系统记录了中心点火管火焰在药床中的传播过程,采用瞬态压力记录仪记录膛内压力的时空变化。结果表明,点火药量为20 g时,出火时间为0.6 ms;点火药量为30 g时,出火时间为1.5 ms;杆状装药床的传火时间平均为2.2 ms,粒状装药床的传火时间平均为3.4 ms,而杆粒混装药床的传火时间为3.1 ms。可见,点火药量对药床出火时间影响显著,较大的点火药量导致药床出火时间延长;不同装药床结构传火性能差异较大,单一杆状装药床传火性能优于单一粒状装药和杆粒混装药床,并且粒状装药床易形成气体壅塞,膛内会出现明显的压力波动现象;根据火焰传播时序位置点,利用一阶指数衰减函数拟合建立了火焰传播过程数学模型,拟合优度大于0.98。
  • 图  1  模拟试验系统流程图

    Figure  1.  Flow chart of the simulation experimental system

    图  2  可视化模拟装置

    Figure  2.  The visualization device for experimental investigation of propellant charge ignition

    图  3  中心点火管结构示意图

    Figure  3.  Schematic diagram of the central ignition tube

    图  4  测试现场布置

    Figure  4.  Arrangement of the test site

    图  5  不同装药结构

    Figure  5.  Different charging configurations

    图  6  不同试验方案火焰传播序列照片

    Figure  6.  High-speed photography of flame spreading through propellant charge in different cases

    图  7  方案1、3、5火焰传播位置

    Figure  7.  Flame positions along the propellant chamber during charge ignition of cases 1, 3 and 5

    图  8  各方案P1、P2、P3测点的压力曲线

    Figure  8.  Pressure-time curves measured at measuring points P1, P2 and P3 in each case

    表  1  各方案装填参数

    Table  1.   Charging parameters in each case

    方案电底火点火药量/g仿真发射药装药结构仿真发射药量/kg仿真发射药装填密度/(g·cm3)
    13#20单一杆状发射药2.70.58
    23#30单一杆状发射药2.70.58
    33#20单一粒状发射药3.00.64
    43#30单一粒状发射药3.00.64
    53#20杆状-粒状混装发射药1.8(杆状),0.9(粒状)0.58
    下载: 导出CSV

    表  2  各方案传火时间

    Table  2.   Flame speeding time of each case

    方案tL/mstR/mstt/ms
    10.81.62.4
    20.61.42.0
    31.02.63.6
    41.02.23.2
    50.82.33.1
    下载: 导出CSV

    表  3  方案1、3、5火焰传播位置函数拟合系数

    Table  3.   Exponential decay function coefficients in cases 1, 3 and 5

    方案火焰传播方向A/mmt1/msX0/mm
    1 960.73748 5.48834−746.77192
    −2140.6712610.281582129.96097
    3 337.19979 0.96082 −65.56418
    −670.86944 3.58306 675.19170
    5 449.90302 1.92159−216.47406
    −567.63017 1.26204 458.43930
    下载: 导出CSV

    表  4  各方案的最高压力和破膜压力

    Table  4.   The highest pressure and membrane-broken pressure in each case

    方案最高压力/MPa破膜压力/MPa
    12.510.98
    22.820.96
    32.530.85
    42.911.00
    52.631.10
    下载: 导出CSV
  • [1] 金志明, 翁春生. 高等内弹道学 [M]. 北京: 高等教育出版社, 2003: 237−239.
    [2] 翁春生, 王浩. 计算内弹道学 [M]. 北京: 国防工业出版社, 2006: 95−97.
    [3] 王升晨, 周彦煌, 刘千里, 等. 膛内多相燃烧理论及应用 [M]. 北京: 兵器工业出版社, 1994: 84−86.
    [4] ACHARYA R. Effect of different flash-tube vent-hole patterns on interior ballistic processes of ignition cartridge of 120-mm mortar system [J]. International Journal of Energetic Materials and Chemical Propulsion, 2008, 7(5): 383–397. DOI: 10.1615/IntJEnergeticMaterialsChemProp.v7.i5.30.
    [5] HOUIM R W, KUO K K. Understanding interior ballistic processes in a flash tube [J]. Journal of Applied Mechanics, 2010, 77(5): 051403. DOI: 10.1115/1.4001285.
    [6] MOORE J D, ACHARYA R, FERRARA P J. Effect of flash-tube vent-hole patterns on the combustion product discharge rate [J]. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8(3): 199–220. DOI: 10.1615/IntJEnergeticMaterialsChemProp.v8.i3.30.
    [7] JIANG S P, RUI X T, HONG J, et al. Numerical simulation of impact breakage of gun propellant charge [J]. Granular Matter, 2011, 13(5): 611. DOI: 10.1007/s10035-011-0276-1.
    [8] 张瑞华, 芮筱亭, 赵宏立, 等. 基于离散单元法的发射装药挤压破碎模拟实验 [J]. 爆炸与冲击, 2021, 41(6): 062301. DOI: 10.11883/bzycj-2020-0157.

    ZHANG R H, RUI X T, ZHAO H L, et al. Simulational experiment on compression and fracture of propellant charge based on the discrete element method [J]. Explosion and Shock Waves, 2021, 41(6): 062301. DOI: 10.11883/bzycj-2020-0157.
    [9] 陈言坤, 罗兴柏, 甄建伟, 等. 发射药动态力学性能的研究进展 [J]. 含能材料, 2013, 21(5): 675–680. DOI: 10.3969/j.issn.1006-9941.2013.05.023.

    CHEN Y K, LUO X B, ZHEN J W, et al. Review on dynamical mechanical properties of propellants [J]. Chinese Journal of Energetic Materials, 2013, 21(5): 675–680. DOI: 10.3969/j.issn.1006-9941.2013.05.023.
    [10] 王浩, 梁世超, 张莺, 等. 火焰在传火管装药床中的传输特性研究 [J]. 爆炸与冲击, 1999, 19(1): 66–71.

    WANG H, LIANG S C, ZHANG Y, et al. Study of flame propagation characteristics in fire transfering tube [J]. Explosion and Shock Waves, 1999, 19(1): 66–71.
    [11] 王珊珊, 张玉成, 王浩, 等. 大长径比点火管高密实火药床点传火过程两相流的数值模拟 [J]. 爆炸与冲击, 2013, 33(4): 444–448. DOI: 10.11883/1001-1455(2013)04-0444-05.

    WANG S S, ZHANG Y C, WANG H, et al. Two-phase flow in ignition process of consolidated charge bed within a large length-to-diameter ratio igniter tube [J]. Explosion and Shock Waves, 2013, 33(4): 444–448. DOI: 10.11883/1001-1455(2013)04-0444-05.
    [12] 王珊珊, 王浩, 黄明, 等. 药床透气性对大长径比点传火管点传火性能的影响研究 [J]. 弹道学报, 2013, 25(4): 95–99. DOI: 10.3969/j.issn.1004-499X.2013.04.019.

    WANG S S, WANG H, HUANG M, et al. Research on influence of charge permeability on ignition characteristics on large length-diameter ratio igniter tube [J]. Journal of Ballistics, 2013, 25(4): 95–99. DOI: 10.3969/j.issn.1004-499X.2013.04.019.
    [13] 韩博, 张晓志, 邢浴仁, 等. 大口径火炮发射装药点传火模拟试验装置的研究 [J]. 兵工学报, 2008, 29(3): 262–265. DOI: 10.3321/j.issn:1000-1093.2008.03.002.

    HAN B, ZHANG X Z, XING Y R, et al. Research on simulation testing device of the ignition system for large caliber propellant charging [J]. Acta Armamentarii, 2008, 29(3): 262–265. DOI: 10.3321/j.issn:1000-1093.2008.03.002.
    [14] 程诚, 张小兵. 某制导炮弹二维两相流内弹道性能分析与数值模拟研究 [J]. 兵工学报, 2015, 36(1): 58–63. DOI: 10.3969/j.issn.1000-1093.2015.01.009.

    CHENG C, ZHANG X B. Two-dimensional numerical simulation on two-phase flow interior ballistic performance of a guided projectile [J]. Acta Armamentarii, 2015, 36(1): 58–63. DOI: 10.3969/j.issn.1000-1093.2015.01.009.
    [15] MIURA H, MATSUO A, NAKAMURA Y. Three-dimensional simulation of pressure fluctuation in a granular solid propellant chamber within an ignition stage [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 259–267. DOI: 10.1002/prep.201000058.
    [16] JANG J S, Oh S H, ROH T S. Development of three-dimensional numerical model for combustion-flow in interior ballistics [J]. Journal of Mechanical Science and Technology, 2016, 30(4): 1631–1637. DOI: 10.1007/s12206-016-0319-y.
    [17] JENARO G, OTON-MARTINEZ R A, MORATILLA D, et al. Analysis of pressure waves generation in gun combustion chambers during the propellant ignition process [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(2): 228–237. DOI: 10.1002/prep.201500173.
    [18] JARAMAZ S, MICKOVIĆ D, ELEK P. Two-phase flows in gun barrel: theoretical and experimental studies [J]. International Journal of Multiphase Flow, 2011, 37(5): 475–487. DOI: 10.1016/j.ijmultiphaseflow.2011.01.003.
    [19] COLLETTI A, BOYER E, KUO K K, et al. Characterization of black-powder igniter jets into a granular bed through analysis of condensed-phase product deposition and regions of penetration [J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(6): 505–522. DOI: 10.1615/IntJEnergeticMaterialsChemProp.2011001422.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  168
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-03-19
  • 网络出版日期:  2021-09-27
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回