一种弹体入水冲击波阴影成像可视化系统及其试验研究

赵庚 陈拓 姜雄文 郭子涛 张伟

赵庚, 陈拓, 姜雄文, 郭子涛, 张伟. 一种弹体入水冲击波阴影成像可视化系统及其试验研究[J]. 爆炸与冲击, 2022, 42(2): 024102. doi: 10.11883/bzycj-2021-0067
引用本文: 赵庚, 陈拓, 姜雄文, 郭子涛, 张伟. 一种弹体入水冲击波阴影成像可视化系统及其试验研究[J]. 爆炸与冲击, 2022, 42(2): 024102. doi: 10.11883/bzycj-2021-0067
ZHAO Geng, CHEN Tuo, JIANG Xiongwen, GUO Zitao, ZHANG Wei. A shadowgraph visualization system of shock waves caused by water-entry projectiles and its experimental research[J]. Explosion And Shock Waves, 2022, 42(2): 024102. doi: 10.11883/bzycj-2021-0067
Citation: ZHAO Geng, CHEN Tuo, JIANG Xiongwen, GUO Zitao, ZHANG Wei. A shadowgraph visualization system of shock waves caused by water-entry projectiles and its experimental research[J]. Explosion And Shock Waves, 2022, 42(2): 024102. doi: 10.11883/bzycj-2021-0067

一种弹体入水冲击波阴影成像可视化系统及其试验研究

doi: 10.11883/bzycj-2021-0067
基金项目: 国家自然科学基金(11672092,11872021,11962007)
详细信息
    作者简介:

    赵 庚(1992- ),男,博士研究生,1054010981@qq.com

    通讯作者:

    张 伟(1964- ),男,博士,教授,博士生导师, zhdawei@hit.edu.cn

  • 中图分类号: O353.4

A shadowgraph visualization system of shock waves caused by water-entry projectiles and its experimental research

  • 摘要: 扩大成像视野对于开展充水容器中弹体入水冲击波传播及弥散方面的可视化研究具有重要的实际意义。阴影成像技术适用于大视野实验,且对流场冲击波和扰动的可视化研究具有简单性和通用性,其中直接阴影成像最为简单,但可靠点光源的缺乏是阻碍其发展应用的瓶颈。因此基于国产短弧氙灯管,自制了短弧氙灯点光源,根据阴影成像原理,设计出一种弹体入水冲击波阴影成像可视化系统,详细介绍了其组成和运行原理。利用该系统对高速弹体入水进行了试验研究,获得了弹体入水冲击波的阴影成像和冲击波信号的压力时程曲线,通过阴影成像和冲击波信号相结合分析了弹体入水冲击波的传播特性,并进行了理论验证。结果表明:该弹体入水冲击波阴影成像可视化系统具有可靠性和设计的合理性。弹体高速入水后,初始冲击波的强度最大,随着冲击波的传播,冲击波强度逐渐降低,水中冲击波的传播速度不断降低,球形冲击波的半径逐渐增大。
  • 图  1  点光源示意图

    Figure  1.  Schematic diagram of point light source

    图  2  弹体入水冲击波的阴影成像可视化系统

    Figure  2.  Shadowgraph visualization system of shock waves caused by water-entry projectiles

    图  3  实验装置

    Figure  3.  Experimental set-up

    图  4  球形弹体出炮口产生的冲击波

    Figure  4.  The shock wave generated by the spherical projectile exiting the gun

    图  5  弹体入水及空泡扩展过程

    Figure  5.  Processes of the projectile entering the water and its cavity expansion

    图  6  冲击波传播路径

    Figure  6.  Propagation path of the shock wave

    图  7  原始冲击波信号

    Figure  7.  Original shock wave signal

    图  8  冲击波压力时程曲线

    Figure  8.  Shock wave pressure time history curve

    图  9  冲击波场源与观测点

    Figure  9.  Shock wave field source and observation point

  • [1] LUNDSTROM E A. Fluid dynamic analysis of hydraulic ram: NWC TP 5227 [R]. China Lake, California: Naval Weapons Center, 1971.
    [2] SHI H H, KUME M. An experimental research on the flow field of water entry by pressure measurements [J]. Physics of Fluids, 2001, 13(1): 347–349. DOI: 10.1063/1.1329907.
    [3] MCMILLEN J H, HARVEY E N. A spark shadowgraphic study of body waves in water [J]. Journal of Applied Physics, 1946, 17(7): 541–555. DOI: 10.1063/1.1707751.
    [4] MCMILLEN J H. Shock wave pressures in water produced by impact of small spheres [J]. Physical Review, 1945, 68(9/10): 198–209. DOI: 10.1103/physrev.68.198.
    [5] YAMASHITA S, TOGAMI K, SAEKI T, et al. Study of a hypervelocity underwater projectile [C]// Proceedings of the 24th International Symposium on Shock Waves. Beijing, China: Springer, 2005: 1303−1308. DOI: 10.1007/978-3-540-27009-6_202.
    [6] SWANSON L A. A detailed examination of the pressure produced by a hydrodynamic ram event [D]. Cincinnati, OH, USA: University of Cincinnati, 2007.
    [7] 罗小鹏, 徐俊斌, 刘二伟, 等. 高超声速弹丸斜侵彻水的初步实验研究 [C]// 第十五届全国激波与激波管学术会议论文集(下册). 杭州: 中国力学学会, 2012: 549−553.
    [8] 罗小鹏, 徐胜利, 邵鹏飞. 超高速弹丸斜侵彻水现象的试验研究 [J]. 新技术新工艺, 2013(11): 17–21. DOI: 10.3969/j.issn.1003-5311.2013.11.006.

    LUO X P, XU S L, SHAO P F. Experimental research on hypervelocity projectile intruding water [J]. New Technology & New Progress, 2013(11): 17–21. DOI: 10.3969/j.issn.1003-5311.2013.11.006.
    [9] 周杰, 徐胜利, 彭杰. 弹丸高速斜侵彻入水流场显示的初步研究 [J]. 高压物理学报, 2018, 32(1): 015102. DOI: 10.11858/gywlxb.20170509.

    ZHOU J, XU S L, PENG J. Water entry flow-field visualization of the oblique penetration of a high-speed projectile [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015102. DOI: 10.11858/gywlxb.20170509.
    [10] HUANG W, ZHANG W, REN P, et al. An experimental investigation of water-filled tank subjected to horizontal high speed impact [J]. Experimental Mechanics, 2015, 55(6): 1123–1138. DOI: 10.1007/s11340-015-0012-6.
    [11] 易仕和, 赵玉新, 田立丰, 等. 超声速流场NPLS精细测试技术及典型应用 [M]. 北京: 国防工业出版社, 2013: 6−7.
    [12] 加里·塞特尔. 纹影与阴影技术—透明介质中的可视化现象 [M]. 叶继飞, 文明, 徐徐, 等, 译. 北京: 国防工业出版社, 2018.
    [13] EDGERTON H E. Shock wave photography of large subjects in daylight [J]. Review of Scientific Instruments, 1958, 29(2): 171–172. DOI: 10.1063/1.1716129.
    [14] HARGATHER M J, SETTLES G S. Retroreflective shadowgraph technique for large-scale flow visualization [J]. Applied Optics, 2009, 48(22): 4449–4457. DOI: 10.1364/AO.48.004449.
    [15] SETTLES G S, GRUMSTRUP T P, MILLER J D, et al. Full-scale high-speed “edgerton” retroreflective shadowgraphy of explosions and gunshots [C]// Proceedings of 5th Pacific Symposium on Flow Visualisation and Image Processing. Daydream Island, Australia, 2005.
    [16] BORVIK T, HOLEN K, LANGSETH M, et al. An experimental set-up used in ballistic penetration [J]. Transactions on the Built Environment, 1998, 32: 683–692.
    [17] LEE M, LONGORIA R G, WILSON D E. Ballistic waves in high-speed water entry [J]. Journal of Fluids and Structures, 1997, 11(7): 819–844. DOI: 10.1006/jfls.1997.0103.
  • 加载中
图(9)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  212
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-05-27
  • 网络出版日期:  2022-01-11
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回