破片群作用下复合材料层合板近场动力学损伤模拟

陈志鹏 马福临 杨娜娜 姚熊亮 鞠金龙

陈志鹏, 马福临, 杨娜娜, 姚熊亮, 鞠金龙. 破片群作用下复合材料层合板近场动力学损伤模拟[J]. 爆炸与冲击, 2022, 42(3): 033303. doi: 10.11883/bzycj-2021-0081
引用本文: 陈志鹏, 马福临, 杨娜娜, 姚熊亮, 鞠金龙. 破片群作用下复合材料层合板近场动力学损伤模拟[J]. 爆炸与冲击, 2022, 42(3): 033303. doi: 10.11883/bzycj-2021-0081
CHEN Zhipeng, MA Fulin, YANG Nana, YAO Xiongliang, JU Jinlong. Peridynamic damage simulation of composite structures subjected to fragment clusters[J]. Explosion And Shock Waves, 2022, 42(3): 033303. doi: 10.11883/bzycj-2021-0081
Citation: CHEN Zhipeng, MA Fulin, YANG Nana, YAO Xiongliang, JU Jinlong. Peridynamic damage simulation of composite structures subjected to fragment clusters[J]. Explosion And Shock Waves, 2022, 42(3): 033303. doi: 10.11883/bzycj-2021-0081

破片群作用下复合材料层合板近场动力学损伤模拟

doi: 10.11883/bzycj-2021-0081
基金项目: 国家自然科学基金(51879048,51809054)
详细信息
    作者简介:

    陈志鹏(1994- ),男,博士研究生,chenzhiepng2012@163.com

    通讯作者:

    杨娜娜(1980- ),女,博士,教授,yangnana@hrbeu.edu.cn

  • 中图分类号: O382

Peridynamic damage simulation of composite structures subjected to fragment clusters

  • 摘要: 采用一种新兴的无网格法——近场动力学理论,模拟复合材料结构在破片群载荷作用下的损伤情况。根据复合材料结构受到载荷的特性,总结破片群冲击作用下复合材料结构损伤特性,分析其破坏过程,研究破片群增强效应,并对破片速度、破片数量、破片群间距对侵彻能力增强效应的影响进行分析。结果表明:层合板结构在高速破片群侵彻作用下损伤模式多样,与破片数量、速度、间距相关;破片数量的增加,对破片群侵彻能力增强效应明显;破片间距与破片群侵彻能力增强效应负相关,破片间距减小,破片群损伤效应提高;破片速度直接决定穿透时间,破片速度的提高使得穿透时间缩短,应力波的叠加效应不足以影响破片群的侵彻能力。
  • 图  1  不同数量破片群排列示意图

    Figure  1.  Schematic diagram of the arrangement of fragment groups with different numbers

    图  2  破片群冲击工况示意图

    Figure  2.  Schematic diagram of the impact condition of the fragment group

    图  3  模型损伤程度

    Figure  3.  Damage degree of the model

    图  4  破片群侵彻下层合板的破坏过程(S=1 mm, v=800 m/s)

    Figure  4.  Failure process of the laminate subjected to fragment group penetration (S=1 mm, v=800 m/s)

    图  5  破片群侵彻下层合板的破坏过程(S=10 mm, v=800 m/s)

    Figure  5.  Failure process of the laminate subjected to fragment group penetration (S=10 mm, v=800 m/s)

    图  6  破片数量对破片群侵彻能力的影响

    Figure  6.  Influence of the fragment number on the penetration ability of the fragment group

    图  7  破片间距对破片群侵彻能力的影响

    Figure  7.  Influence of the fragment spacing on the penetration ability of the fragment group

    图  8  破片群侵彻下层合板的破坏过程(S=5 mm, v=800 m/s)

    Figure  8.  Failure process of the laminate subjected to fragment group penetration (S=5 mm, v=800 m/s)

    图  9  破片群侵彻下层合板的破坏过程(S=20 mm, v=800 m/s)

    Figure  9.  Failure process of the laminate subjected to fragment group penetration (S=20 mm, v=800 m/s)

    图  10  不同初始速度下破片群与单破片侵彻能力对比

    Figure  10.  Comparison of penetration ability between fragment group and single fragment at different initial velocities

    图  11  破片群侵彻下层合板的破坏过程(S=3 mm, v=1 200 m/s)

    Figure  11.  Failure process of the laminate subjected to fragment group penetration (S=3 mm, v=1 200 m/s)

    表  1  层合板材料性能参数

    Table  1.   Material properties of the laminate

    参数含义数值单位
    E1x方向弹性模量125GPa
    E2y方向弹性模量7.6GPa
    E3z方向弹性模量7.6GPa
    ν12面内泊松比0.344
    ν13面外泊松比0.344
    ν23面外泊松比0.46
    G12xy平面剪切模量4.32GPa
    G13xz平面剪切模量4.32GPa
    G23yz平面剪切模量3.23GPa
    ρ密度1678kg/m3
    Xt纵向拉伸强度2200MPa
    Xc纵向压缩强度1100MPa
    Yt横向拉伸强度50MPa
    Yc横向压缩强度200MPa
    下载: 导出CSV

    表  2  破片间距$S=1\;{\rm{mm}}$时,在破片群侵彻下层合板的损伤模式

    Table  2.   Damage modes of the laminate subjected to fragment group penetration when the fragment spacing $S=1\;{\rm{mm}}$

    v/(m·s−1)基体损伤剪切损伤
    迎弹面迎弹面迎弹面背弹面
    300
    800
    1 200
    下载: 导出CSV

    表  3  破片间距$S=10\;{\rm{mm}}$时,在破片群侵彻下层合板的损伤模式

    Table  3.   Damage modes of the laminate subjected to fragment group penetration when the fragment spacing $S=10\;{\rm{mm}}$

    v/(m·s−1)基体损伤 剪切损伤
    迎弹面背弹面迎弹面背弹面
    300
    800
    1 200
    下载: 导出CSV
  • [1] RIEDEL W, NAHME H, WHITE D M, et al. Hypervelocity impact damage prediction in composites: Part Ⅱ: experimental investigations and simulations [J]. International Journal of Impact Engineering, 2006, 33(1): 670–680. DOI: 10.1016/j.ijimpeng.2006.09.052.
    [2] 王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究 [J]. 爆炸与冲击, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.

    WANG X Q, ZHU X, MEI Z Y, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates [J]. Explosion and Shock Waves, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.
    [3] WAMBUA P, VANGRIMDE B, LOMOV S, et al. The response of natural fibre composites to ballistic impact by fragment simulating projectiles [J]. Composite Structures, 2007, 77(2): 232–240. DOI: 10.1016/j.compstruct.2005.07.006.
    [4] 李典, 侯海量, 朱锡, 等. 破片群侵彻纤维增强层合板破坏机理及穿甲能力等效方法 [J]. 兵工学报, 2018, 39(4): 707–716. DOI: 10.3969/j.issn.1000-1093.2018.04.010.

    LI D, HOU H L, ZHU X, et al. Study of the failure mechanism of fiber reinforced composite laminates subjected to fragment cluster penetration and the equivalent method for armor piercing ability of fragment cluster [J]. Acta Armamentarii, 2018, 39(4): 707–716. DOI: 10.3969/j.issn.1000-1093.2018.04.010.
    [5] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0.
    [6] 李典, 侯海量, 戴文喜, 等. 爆炸冲击波和破片联合作用下玻璃纤维夹芯复合结构毁伤特性实验研究 [J]. 兵工学报, 2017, 38(5): 877–885. DOI: 10.3969/j.issn.1000-1093.2017.05.006.

    LI D, HOU H L, DAI W X, et al. Experimental investigation on damage of glassfiber sandwich structure under explosion and fragment loadings [J]. Acta Armamentarii, 2017, 38(5): 877–885. DOI: 10.3969/j.issn.1000-1093.2017.05.006.
    [7] 姜翠香. 裂纹损伤舰船结构的断裂及止裂研究 [D]. 武汉: 华中科技大学, 2004: 1−3.

    JIANG C X. Research on fracture and crack arrest in ship structrue [D]. Wuhan: Huazhong University of Science and Technology, 2004: 1−3.
    [8] 姚熊亮. 舰船结构振动冲击与噪声 [M]. 北京: 国防工业出版社, 2007: 144−146.
    [9] 赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992: 52−53.
    [10] 侯海量, 朱锡, 谷美邦, 等. 破片模拟弹侵彻钢板的有限元分析 [J]. 海军工程大学学报, 2006, 18(3): 78–83; 88. DOI: 10.3969/j.issn.1009-3486.2006.03.019.

    HOU H L, ZHU X, GU M B, et al. Investigation on penetration of steel plate by fragment simulated projectile using finite element method [J]. Journal of Naval University of Engineering, 2006, 18(3): 78–83; 88. DOI: 10.3969/j.issn.1009-3486.2006.03.019.
    [11] 侯海量, 朱锡, 李伟, 等. 低速大质量球头弹冲击下薄板穿甲破坏机理数值分析 [J]. 振动与冲击, 2008, 27(1): 40–45. DOI: 10.13465/j.cnki.jvs.2008.01.004.

    HOU H L, ZHU X, LI W, et al. Numerical analysis of perforation mechanism for a thin plate subjected to impact by hemispherical-nosed projectiles with low velocity [J]. Journal of Vibration and Shock, 2008, 27(1): 40–45. DOI: 10.13465/j.cnki.jvs.2008.01.004.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  195
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-10-28
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回