基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究

张涛 蔚立元 苏海健 罗宁 魏江波

张涛, 蔚立元, 苏海健, 罗宁, 魏江波. 基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究[J]. 爆炸与冲击, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
引用本文: 张涛, 蔚立元, 苏海健, 罗宁, 魏江波. 基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究[J]. 爆炸与冲击, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
ZHANG Tao, YU Liyuan, SU Haijian, LUO Ning, WEI Jiangbo. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
Citation: ZHANG Tao, YU Liyuan, SU Haijian, LUO Ning, WEI Jiangbo. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089

基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究

doi: 10.11883/bzycj-2021-0089
基金项目: 国家自然科学基金(51579239,42077240,12072363)
详细信息
    作者简介:

    张 涛(1994- ),男,博士研究生,TS17030057A3TM@cumt.edu.cn

    通讯作者:

    蔚立元(1982- ),男,博士,教授,yuliyuan@cumt.edu.cn

  • 中图分类号: O346.1

Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation

  • 摘要: 为探究循环冲击损伤后大理岩的静态断裂力学特征,基于有限差分(finite difference method,FDM)-离散元(discrete element method,DEM)耦合的建模技术构建了三维分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)数值模型,其中杆件系统和岩石试件分别采用FLAC3D和PFC3D程序建模。利用该模型对中心直切槽半圆盘(NSCB)试样进行了恒定子弹速度下的循环冲击,随后对受损试样进行静态三点弯曲断裂实验。通过编写Fish程序,提取试样断裂面数据,对断裂面进行重构并定量计算表面粗糙度。通过与相关室内实验结果的对比分析,验证了本文数值分析的合理性与可靠性。模拟结果表明,随着循环冲击次数的增加,试样内部微裂纹、破碎颗粒均增加。连接力场分布混乱,部分力链发生断裂。力链的变化是试样力学性能劣化的根本原因。在静态三点弯曲断裂实验中,冲击5次后试样的静态断裂韧度较天然试样产生一定程度的降低。试样在静载过程中产生的微裂纹和碎块的数量随循环冲击次数的增加而增加,断裂面粗糙度随循环冲击次数的增加而增加。
  • 图  1  SHPB模拟系统

    Figure  1.  Simulation of the SHPB system

    图  2  模拟应力波

    Figure  2.  Stress waves obtained from the numerical simulation

    图  3  静态三点弯曲模拟实验

    Figure  3.  Simulation of the static three-point bending test

    图  4  天然大理岩试样实验与模拟结果比较[18]

    Figure  4.  Comparison of the experimental and numerical results of the static three-point bending test of a natural marble sample[18]

    图  5  应力波在杆件中的传播过程

    Figure  5.  Stress wave propagation in the bars

    图  6  循环冲击加载过程中应力波信号变化

    Figure  6.  Variation of the stress wave signals during the cyclic impact loading

    图  7  模拟动态应力-应变曲线

    Figure  7.  Dynamic stress-strain curves obtained from numerical simulations

    图  8  峰值应力实验值与模拟值比较[18]

    Figure  8.  Comparison of the dynamic peak stress results obtained from experiments and numerical simulations[18]

    图  9  动态损伤演变过程

    Figure  9.  Evolution process of the dynamic damage

    图  10  微裂纹及碎块数量随冲击次数的变化规律

    Figure  10.  Variation of the microcrack number and fragment number with the cyclic impact number

    图  11  循环冲击作用下试样接触力场演变过程

    Figure  11.  Evolution of the contact force field of a sample under cyclic impact loading

    图  12  受损大理岩的微观图像

    Figure  12.  Photomicrographs of the damaged marbles

    图  13  模拟静态荷载-位移曲线对比[18]

    Figure  13.  Comparison of the static load-displacement curves obtained from experiments and numerical simulations[18]

    图  14  断裂参数实验值和模拟值比较[18]

    Figure  14.  Comparison of the fracture parameters obtained from experiments and numerical simulations[18]

    图  15  模拟试样断裂破坏形态

    Figure  15.  Fracture and failure patterns of the simulated sample

    图  16  新增微裂纹及碎块数量随冲击次数的变化情况

    Figure  16.  Variation of the new microcrack and fragment number with the cyclic impact number

    图  17  模拟试样断裂面形貌

    Figure  17.  Topography of the fracture surface of the numerical sample

    图  18  断裂面粗糙度变化

    Figure  18.  Variation of the fracture surface roughness

  • [1] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.

    HE M C, XIE H P, PENG S P, et al. Study on rock mechanics in deep mining engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.
    [2] 钱七虎. 地下工程建设安全面临的挑战与对策 [J]. 岩石力学与工程学报, 2012, 31(10): 1945–1956. DOI: 10.3969/j.issn.1000-6915.2012.10.001.

    QIAN Q H. Challenges faced by underground projects construction safety and countermeasures [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945–1956. DOI: 10.3969/j.issn.1000-6915.2012.10.001.
    [3] 刘达, 卢文波, 陈明, 等. 隧洞钻爆开挖爆破振动主频衰减公式研究 [J]. 岩石力学与工程学报, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.

    LIU D, LU W B, CHEN M, et al. Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.
    [4] 单仁亮, 宋立伟, 白瑶, 等. 爆破作用下冻结岩壁损伤评价的模型试验研究 [J]. 岩石力学与工程学报, 2014, 33(10): 1945–1952. DOI: 10.13722/j.cnki.jrme.2014.10.001.

    SHAN R L, SONG L W, BAI Y, et al. Model test studies of damage evaluation of frozen rock wall under blasting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1945–1952. DOI: 10.13722/j.cnki.jrme.2014.10.001.
    [5] 刘亮, 卢文波, 陈明, 等. 钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究 [J]. 岩石力学与工程学报, 2016, 35(6): 1133–1140. DOI: 10.13722/j.cnki.jrme.2015.0851.

    LIU L, LU W B, CHEN M, et al. Statistic damage threshold of critical broken rock mass under blasting load [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1133–1140. DOI: 10.13722/j.cnki.jrme.2015.0851.
    [6] 闫长斌. 基于声波频谱特征的岩体爆破累积损伤效应分析 [J]. 岩土力学, 2017, 38(9): 2721–2727, 2745. DOI: 10.16285/j.rsm.2017.09.033.

    YAN C B. Analysis of cumulative damage effect of rock mass blasting based on acoustic frequency spectrum characters [J]. Rock and Soil Mechanics, 2017, 38(9): 2721–2727, 2745. DOI: 10.16285/j.rsm.2017.09.033.
    [7] XIONG J J, SHENOI R A. A two-stage theory on fatigue damage and life prediction of composites [J]. Composites Science and Technology, 2004, 64(9): 1331–1343. DOI: 10.1016/j.compscitech.2003.10.006.
    [8] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [9] 金解放, 李夕兵, 殷志强, 等. 轴压和围压对循环冲击下砂岩能量耗散的影响 [J]. 岩土力学, 2013, 34(11): 3096–3102, 3109. DOI: 10.16285/j.rsm.2013.11.007.

    JIN J F, LI X B, YIN Z Q, et al. Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads [J]. Rock and Soil Mechanics, 2013, 34(11): 3096–3102, 3109. DOI: 10.16285/j.rsm.2013.11.007.
    [10] WANG Z L, TIAN N C, WANG J G, et al. Experimental study on damage mechanical characteristics of heat-treated granite under repeated impact [J]. Journal of Materials in Civil Engineering, 2018, 30(11): 04018274. DOI: 10.1061/(ASCE)MT.1943-5533.0002465.
    [11] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [12] 林大能, 陈寿如. 循环冲击荷载作用下岩石损伤规律的试验研究 [J]. 岩石力学与工程学报, 2005, 24(22): 4094–4098. DOI: 10.3321/j.issn:1000-6915.2005.22.014.

    LIN D N, CHEN S R. Experimental study on damage evolution law of rock under cyclical impact loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(22): 4094–4098. DOI: 10.3321/j.issn:1000-6915.2005.22.014.
    [13] 王彤, 宋战平, 杨建永. 循环冲击作用下风化红砂岩动态响应特性 [J]. 岩石力学与工程学报, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.

    WANG T, SONG Z P, YANG J Y. Dynamic response characteristics of weathered red sandstone under cyclic impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.
    [14] 左建平, 周宏伟, 范雄, 等. 三点弯曲下热处理北山花岗岩的断裂特性研究 [J]. 岩石力学与工程学报, 2013, 32(12): 2422–2430.

    ZUO J P, ZHOU H W, FAN X, et al. Research on fracture behavior of Beishan granite after heat treatment under three-point bending [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2422–2430.
    [15] 贺晶晶, 师俊平. 冻融循环作用下砂岩三点弯曲断裂性能试验及其破坏形态研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2917–2925. DOI: 10.13722/j.cnki.jrme.2017.0778.

    HE J J, SHI J P. Fracturing behavior and failure pattern of sandstone in three-point bending test under freezing-thawing cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2917–2925. DOI: 10.13722/j.cnki.jrme.2017.0778.
    [16] 杨健锋, 梁卫国, 陈跃都, 等. 不同水损伤程度下泥岩断裂力学特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2431–2440. DOI: 10.13722/j.cnki.jrme.2017.0690.

    YANG J F, LIANG W G, CHEN Y D, et al. Experiment research on the fracturing characteristics of mudstone with different degrees of water damage [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2431–2440. DOI: 10.13722/j.cnki.jrme.2017.0690.
    [17] HU L Q, LI X B. Damage and fragmentation of rock under experiencing impact load [J]. Journal of Central South University of Technology, 2006, 13(4): 432–437. DOI: 10.1007/s11771-006-0063-z.
    [18] 付安琪, 蔚立元, 苏海健, 等. 循环冲击损伤后大理岩静态断裂力学特性研究 [J]. 岩石力学与工程学报, 2019, 38(10): 2021–2030. DOI: 10.13722/j.cnki.jrme.2019.0323.

    FU A Q, YU L Y, SU H J, et al. Experimental study on static fracturing mechanical characteristics of marble after cyclic impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2021–2030. DOI: 10.13722/j.cnki.jrme.2019.0323.
    [19] 汪小梦, 朱哲明, 施泽彬, 等. 基于VB-SCSC岩石试样的动态断裂韧度测试方法研究 [J]. 岩石力学与工程学报, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.

    WANG X M, ZHU Z M, SHI Z B, et al. A method measuring dynamic fracture toughness of rock using VB-SCSC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.
    [20] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [21] DU H B, DAI F, XU Y, et al. Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108: 43–57. DOI: 10.1016/j.ijrmms.2018.05.008.
    [22] XU Y, DAI F, XU N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 731–745. DOI: 10.1007/s00603-015-0787-x.
    [23] LI X B, ZOU Y, ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1693–1709. DOI: 10.1007/s00603-013-0484-6.
    [24] WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
    [25] LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
    [26] 付龙龙, 周顺华, 田志尧, 等. 双轴压缩条件下颗粒材料中力链的演化 [J]. 岩土力学, 2019, 40(6): 2427–2434. DOI: 10.16285/j.rsm.2018.1212.

    FU L L, ZHOU S H, TIAN Z Y, et al. Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427–2434. DOI: 10.16285/j.rsm.2018.1212.
    [27] KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-Suggested method for determining the mode Ⅰ static fracture toughness using semi-circular bend specimen [J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. DOI: 10.1007/s00603-013-0422-7.
  • 加载中
图(18)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  283
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-06-19
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回