加载角度对层理页岩裂纹扩展影响的实验研究

杨国梁 毕京九 郭伟民 张志飞 韩子默 程帅杰

杨国梁, 毕京九, 郭伟民, 张志飞, 韩子默, 程帅杰. 加载角度对层理页岩裂纹扩展影响的实验研究[J]. 爆炸与冲击, 2021, 41(9): 093101. doi: 10.11883/bzycj-2021-0097
引用本文: 杨国梁, 毕京九, 郭伟民, 张志飞, 韩子默, 程帅杰. 加载角度对层理页岩裂纹扩展影响的实验研究[J]. 爆炸与冲击, 2021, 41(9): 093101. doi: 10.11883/bzycj-2021-0097
YANG Guoliang, BI Jingjiu, GUO Weimin, ZHANG Zhifei, HAN Zimo, CHENG Shuaijie. Experimental study on the effect of loading angle on crack propagation in bedding shale[J]. Explosion And Shock Waves, 2021, 41(9): 093101. doi: 10.11883/bzycj-2021-0097
Citation: YANG Guoliang, BI Jingjiu, GUO Weimin, ZHANG Zhifei, HAN Zimo, CHENG Shuaijie. Experimental study on the effect of loading angle on crack propagation in bedding shale[J]. Explosion And Shock Waves, 2021, 41(9): 093101. doi: 10.11883/bzycj-2021-0097

加载角度对层理页岩裂纹扩展影响的实验研究

doi: 10.11883/bzycj-2021-0097
基金项目: 国家自然科学基金重点项目(51934001)
详细信息
    作者简介:

    杨国梁(1979- ),男,博士,副教授,yanggl531@163.com

    通讯作者:

    毕京九(1995- ),男,博士研究生,bijingjiu@126.com

  • 中图分类号: O346; TU452

Experimental study on the effect of loading angle on crack propagation in bedding shale

  • 摘要: 采用分离式霍普金森压杆(SHPB)系统对页岩进行冲击实验,研究层理角度对页岩动态断裂过程的影响,在裂尖设置裂纹扩展计,借助高速摄影和数字图像相关(DIC)技术对页岩中心切槽半圆盘弯曲(NSCB)试件断裂的全过程进行研究,得到了不同加载角度下页岩的动态起裂韧度、裂纹扩展速度、断裂过程中应变场和水平位移场的变化规律。实验发现:不同加载角度下,页岩的动态起裂韧度具有显著的各向异性,加载角度与动态起裂韧度呈正相关;加载角度对试样的裂纹扩展速度具有显著影响,与裂纹扩展速度呈负相关;当冲击速度较低时,切槽方向是裂纹扩展的优势方向,而当冲击速度较高时,试样会产生沿层理弱面的次生裂纹,次生裂纹对试样的断裂具有显著影响。
  • 图  1  NSCB试件构型

    Figure  1.  Schematic diagram of NSCB

    图  2  页岩NSCB试件加载角示意图

    Figure  2.  Loading angle of the shale NSCB specimens

    图  3  实验所用页岩NSCB试件

    Figure  3.  Shale NSCB specimens

    图  4  SHPB实验布置

    Figure  4.  Layout of the SHPB experiments

    图  5  力平衡的验证

    Figure  5.  Verification of the force balance

    图  6  加载率的确定

    Figure  6.  Determination of the loading rate

    图  7  典型加载波形时程曲线

    Figure  7.  Time history curve of a typical loading waveform

    图  8  典型裂纹扩展计电压时程曲线

    Figure  8.  Voltage time history curve of a typical crack growth meter

    图  9  加载率与动态起裂韧度关系曲线

    Figure  9.  Relationship between the loading rate and the dynamic fracture toughness

    图  10  裂纹扩展位置示意图

    Figure  10.  Schematic diagram of the crack propagation position

    图  11  不同加载率下C-0试件裂纹扩展速度变化

    Figure  11.  Crack propagation speed of the C-0 specimens under different loading rates

    图  12  等冲击速度下不同加载角试件的裂纹扩展速度

    Figure  12.  Crack propagation speed of specimens with different loading angles under constant impact velocity

    图  13  典型页岩NSCB试件动态断裂过程

    Figure  13.  Dynamic fracture process of a typical shale NSCB specimen

    图  14  DIC数据处理过程中的裂尖坐标轴及目标子区域

    Figure  14.  Crack tip coordinate axises and target subregion during DIC data processing

    图  15  C-0试件典型位移场和应变场变化规律

    Figure  15.  Typical displacement field and strain field of the C-0 specimens

    图  16  60°试件典型位移场和应变场变化规律

    Figure  16.  Typical displacement field and strain field of the specimens with loading angle of 60°

    图  17  不同冲击速度下页岩试样的典型破坏形态

    Figure  17.  Typical failure modes of shale NSCB specimens under different impact speeds

    图  18  试件沿层理面断裂

    Figure  18.  Specimen fractures along the bedding plane

    图  19  断裂过程

    Figure  19.  Fracture process

    表  1  页岩基本力学性质

    Table  1.   Mechanical properties of shale

    层理方向单轴抗压强度/MPa密度/(g·cm−3弹性模量/GPa泊松比纵波波速/(m·s−1
    平行层理 97.342.4317.620.294 217
    垂直层理108.212.4626.340.324 592
    下载: 导出CSV

    表  2  页岩动态起裂韧度

    Table  2.   Dynamic initiation toughness of shale

    加载角度冲击速度/(m·s−1起裂时刻/μs加载力峰值对应时刻/μs加载率/(GPa·m1/2·s−1动态起裂韧度/(MPa·m1/2裂纹扩展速度/(m·s−1
    C-03551.3493.889.3353.83278.49
    4538.1527.9179.3915.85296.43
    5551.5525.3348.4828.28382.26
    3554.7524.6108.3222.45335.30
    4571.8538.3309.2857.14383.71
    5524.9518.4474.1679.23445.16
    30°3570.3547.2119.4424.23312.21
    4519.2489.6235.9746.28392.52
    5563.4523.4392.1548.04415.17
    60°3554.9535.2122.364.02264.50
    4577.4521.7269.2427.03350.02
    5576.1549.3430.5639.07382.35
    90°3578.8554.3160.9475.13225.66
    4533.2507.6323.6268.62331.74
    5569.4513.8463.59210.44 367.53
    下载: 导出CSV

    表  3  页岩NSCB试样的典型破坏路径

    Table  3.   Typical failure pathes of shale NSCB samples

    冲击速度/(m·s−1加载角度
    C-030°60°90°
    3
    4
    5
    下载: 导出CSV
  • [1] 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力 [J]. 天然气工业, 2008(6): 136–140. DOI: 10.3787/j.issn.1000-0976.2008.06.040.

    ZHANG J C, XU B, NIE H K, et al. Exploration potential of shale gas resources in China [J]. Natural Gas Industry, 2008(6): 136–140. DOI: 10.3787/j.issn.1000-0976.2008.06.040.
    [2] 陈军斌. 页岩气储层液体火药高能气体压裂增产关键技术研究[M]. 北京: 科学出版社地质分社, 2017.
    [3] YANG G L, BI J J, MA L N. Dynamic compression damage energy consumption and fractal characteristics of shale [J]. Shock and Vibration, 2019(3): 1–7. DOI: 10.1155/2019/5792841.
    [4] 李德建, 祁浩, 李春晓, 等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究 [J]. 矿业科学学报, 2020, 5(2): 150–159. DOI: 10.19606/j.cnki.jmst.2020.02.003.

    LI D J, QI H, LI C X, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes [J]. Journal of Mining Science and Technology, 2020, 5(2): 150–159. DOI: 10.19606/j.cnki.jmst.2020.02.003.
    [5] 邓华锋, 王伟, 李建林, 等. 层状砂岩各向异性力学特性试验研究 [J]. 岩石力学与工程学报, 2008, 37(1): 112–120. DOI: 10.13722/j.cnki.jrme.2017.1205.

    DENG H F, WANG W, LI J L, et al. Experimental study on anisotropic characteristics of bedded sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 37(1): 112–120. DOI: 10.13722/j.cnki.jrme.2017.1205.
    [6] 王聪聪, 李江腾, 林杭, 等. 板岩单轴压缩各向异性力学特征 [J]. 中南大学学报(自然科学版), 2019, 47(11): 3759–3764. DOI: 10.11817/j.issn.1672-7207.2016.11.020.

    WANG C C, LI J T, LI K, et al. Anisotropic mechanical characteristics of slat in uniaxial compression [J]. Journal of Central South University (Science and Technology), 2019, 47(11): 3759–3764. DOI: 10.11817/j.issn.1672-7207.2016.11.020.
    [7] 衡帅, 杨春和, 张保平, 等. 页岩各向异性特征的试验研究 [J]. 岩土力学, 2015, 36(3): 609–616. DOI: 10.16285/j.rsm.2015.03.001.

    HENG S, YANG C H, ZHANG B P, et al. Experimental research on anisotropic properties of shale [J]. Rock and Soil Mechanics, 2015, 36(3): 609–616. DOI: 10.16285/j.rsm.2015.03.001.
    [8] HUANG D, LI B, MA W Z, et al. Effects of bedding planes on fracture behavior of sandstone under semi-circular bending test [J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102625. DOI: 10.1016/j.tafmec.2020.102625.
    [9] 何柏, 谢凌志, 李凤霞, 等. 龙马溪页岩各向异性变形破坏特征及其机理研究 [J]. 中国科学: 物理学 力学 天文学, 2017, 47(11): 114611. DOI: 10.1360/sspma2016-00534.

    HE B, XIE L Z, LI F X, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(11): 114611. DOI: 10.1360/sspma2016-00534.
    [10] 衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究 [J]. 岩石力学与工程学报, 2015, 34(2): 228–237. DOI: 10.13722/j.cnki.jrme.2015.02.002.

    HENG S, YANG C H, GUO Y T, et al. Influence of bedding planes on hydraulic fracture propagation in shale formations [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228–237. DOI: 10.13722/j.cnki.jrme.2015.02.002.
    [11] 李玉琳. 龙马溪组层状页岩宏细观破坏行为及模型研究[D]. 北京: 中国矿业大学(北京), 2019: 49–73.

    LI Y L. Investigation on macroscopic and microscopic failure behavior and model study of layered Longmaxi shale [D]. Beijing: China University of Mining and Tachnology (Beijing), 2019: 49–73.
    [12] ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 49: 105–112. DOI: 10.1016/j.ijrmms.2011.10.004.
    [13] 赵文峰, 张盛, 王猛, 等. 用两种ISRM推荐圆盘试样测试岩石断裂韧度的试验研究 [J]. 实验力学, 2020, 35(4): 702–711. DOI: 10.7520/1001-4888-18-216.

    ZHAO W F, ZHANG S, WANG M, et al. Experimental study on testing rock fracture toughness with two types of disc specimens recommended by ISRM [J]. Journal of Experimental Mechanics, 2020, 35(4): 702–711. DOI: 10.7520/1001-4888-18-216.
    [14] 宋耀. 不同加载率条件下花岗岩动态断裂及损伤机理试验研究[D]. 北京: 中国矿业大学(北京), 2019: 87–95.

    SONG Y. Experimental study on dynamic fracture and damage mechanism of granite under different loading rates [D]. Beijing: China University of Mining and Tachnology (Beijing), 2019: 87–95.
    [15] YANG G L, LI X G, BI J J, et al. Dynamic crack initiation toughness of shale under impact loading [J]. Energies, 2019, 12(9): 1636. DOI: 10.3390/en12091636.
    [16] SHI X S, YAO W, LIU D A, et al. Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens [J]. Engineering Fracture Mechanics, 2019, 205: 136–151. DOI: 10.1016/j.engfracmech.2018.11.027.
    [17] 赵子江, 刘大安, 崔振东, 等. 半圆盘三点弯曲法测定页岩断裂韧度(K C)的实验研究 [J]. 岩土力学, 2018, 39(S1): 258–266. DOI: 10.16285/j.rsm.2018.0571.

    ZHAO Z J, LIU D A, CUI Z D, et al. Experimental study of determining fracture toughness K C of shale by semi-disc three-point bending [J]. Rock and Soil Mechanics, 2018, 39(S1): 258–266. DOI: 10.16285/j.rsm.2018.0571.
    [18] 曹富, 杨丽萍, 李炼, 等. 压缩单裂纹圆孔板(SCDC)岩石动态断裂全过程研究 [J]. 岩土力学, 2017, 38(6): 1573–1582; 1588. DOI: 10.16285/j.rsm.2017.06.005.

    CAO F, YANG L P, LI L, et al. Research on whole dynamic fracture process of rock using single cleavage drilled compression (SCDC) specimen [J]. Rock and Soil Mechanics, 2017, 38(6): 1573–1582; 1588. DOI: 10.16285/j.rsm.2017.06.005.
    [19] GAO G, HUANG S, XIA K, et al. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests [J]. Experimental Mechanics, 2015, 55(1): 95–104. DOI: 10.1007/s11340-014-9863-5.
    [20] 潘兵, 吴大方, 夏勇. 数字图像相关方法中散斑图的质量评价研究 [J]. 实验力学, 2010, 25(2): 120–129.

    PAN B, WU D F, XIA Y. Study of speckle pattern quality assessment used in digital image correlation [J]. Journal of Experimental Mechanics, 2010, 25(2): 120–129.
    [21] ZHANG Q B, ZHAO J. Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms [J]. International Journal of Fracture, 2014, 189: 1–32. DOI: 10.1007/s10704-014-9959-z.
    [22] 周妍, 张财贵, 王启智. 用圆孔内单边裂纹平台巴西圆盘和实验-数值-解析法确定砂岩的动态起裂和扩展韧度 [J]. 振动与冲击, 2017, 36(5): 37–47. DOI: 10.13465/j.cnki.jvs.2017.05.007.

    ZHOU Y, ZHANG C G, WANG Q Z. Determination of dynamic initiation toughness and dynamic propagation toughness of sandstone [J]. Journal of Vibration and Shock, 2017, 36(5): 37–47. DOI: 10.13465/j.cnki.jvs.2017.05.007.
    [23] 岳中文, 胡庆文, 陈彪. 爆生裂纹与层理缺陷相互作用的实验研究 [J]. 振动与冲击, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017.

    YUE Z W, HU Q W, CHEN B. An experimental study of the interaction between the blast-indused crack and the bedding defect [J]. Journal of Vibration and Shock, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017.
    [24] 王雁冰, 吴后为, 孔骥, 等. 含预制双层理的半圆盘模型冲击试验 [J]. 中国矿业, 2020, 29(11): 198–205.

    WANG Y B, WU H W, KONG J, et al. Impact test of half-disc model with prefabricated double bedding [J]. China Mining Magazine, 2020, 29(11): 198–205.
    [25] 岳中文, 宋耀, 陈彪, 等. 冲击载荷下层状岩体动态断裂行为的模拟试验研究 [J]. 振动与冲击, 2017, 36(12): 223–229. DOI: 10.13465/j.cnki.jvs.2017.12.036.

    YUE Z W, SONG Y, CHEN B, et al. A study on the behaviors of dynamic fracture in layered rock under impact loading [J]. Journal of Vibration and Shock, 2017, 36(12): 223–229. DOI: 10.13465/j.cnki.jvs.2017.12.036.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  287
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回