弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究

王银 孔祥振 方秦 洪建 翟阳修

王银, 孔祥振, 方秦, 洪建, 翟阳修. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究[J]. 爆炸与冲击, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132
引用本文: 王银, 孔祥振, 方秦, 洪建, 翟阳修. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究[J]. 爆炸与冲击, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132
WANG Yin, KONG Xiangzhen, FANG Qin, HONG Jian, ZHAI Yangxiu. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion[J]. Explosion And Shock Waves, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132
Citation: WANG Yin, KONG Xiangzhen, FANG Qin, HONG Jian, ZHAI Yangxiu. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion[J]. Explosion And Shock Waves, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132

弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究

doi: 10.11883/bzycj-2021-0132
基金项目: 国家自然科学基金(51808550);中国博士后科学基金(2020M671296)
详细信息
    作者简介:

    王 银(1991- ),男,博士研究生,wangyin1107@163.com

    通讯作者:

    孔祥振(1988- ),男,博士,副教授,ouckxz@163.com

  • 中图分类号: O385

Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion

  • 摘要: 基于Kong-Fang混凝土材料模型和LS-DYNA的流固耦合和重启动算法,开展了某新型钻地武器先侵彻后爆炸对混凝土靶体的毁伤破坏效应研究。通过模拟大口径缩比弹侵彻实验和预制孔爆炸实验,验证了材料模型及其参数的可靠性。在此基础上,进一步对预制孔装药爆炸建模、不考虑弹壳的重启动建模和考虑弹壳的重启动建模3种方法进行了比较。数值计算结果表明,由于爆轰产物的外泄,不考虑侵彻预损伤的预制孔装药爆炸方法得到的爆坑直径仅为3倍弹径,且损伤破坏模式与其他2种方法得到的损伤破坏模式区别较大。重启动建模方法继承了弹体侵彻过程中累积的损伤,爆坑直径在原有侵彻损伤破坏的基础上明显增大;且由于弹壳变形破碎消耗部分能量,考虑弹壳时模拟得到的爆坑直径(约14.5倍弹径)略小于不考虑弹壳时模拟得到的爆坑直径(约16倍弹径);但由于破碎弹头的二次侵彻作用,考虑弹壳时模拟得到的爆坑深度比不考虑弹壳时模拟得到的爆坑深度增加约5%。上述研究结果可为进一步开展钻地武器先侵彻后爆炸毁伤破坏效应的实验研究提供参考。
  • 图  1  弹靶有限元模型

    Figure  1.  The finite element model of the projectile and target

    图  2  数值预测的靶体损伤破坏

    Figure  2.  Numerically-predicted damage and failure in the concrete target

    图  3  靶体有限元模型

    Figure  3.  The finite element model for the target

    图  4  数值预测靶体的损伤云图和实验结果[28]

    Figure  4.  Numerically-predicted damage in the concrete target and the experimental result[28]

    图  5  弹体尺寸(单位为mm)

    Figure  5.  The projectile dimensions (unit in mm)

    图  6  数值预测的靶体损伤破坏

    Figure  6.  Numerically predicted damage and failure in the concrete target

    图  7  爆炸的3种建模方法

    Figure  7.  Three methods for modeling the charge explosion

    图  8  基于预制孔建模方式的靶体损伤破坏情况

    Figure  8.  Numerically predicted damage and failure in the concrete target by the pre-cast hole method

    图  11  先侵彻后爆炸典型时刻的数值计算结果(t=12.0 ms)

    Figure  11.  Numerical predictions of damage and failure due to penetration followed by explosion at a typical time (t=12.0 ms)

    图  9  基于不考虑弹壳的重启动建模的靶体损伤破坏情况

    Figure  9.  Numerically-predicted damage and failure in the concrete target by the restart method without projectile shell

    图  10  基于考虑弹壳的重启动建模的靶体损伤破坏情况

    Figure  10.  Numerically-predicted damage and failure in the concrete target by the restart method with projectile shell

    图  12  先侵彻后爆炸典型时刻的数值计算结果(t=12.5 ms)

    Figure  12.  Numerical predictions of damage and failure due to penetration followed by explosion at a typical time (t=12.5 ms)

    图  13  先侵彻后爆炸典型时刻的数值计算结果(t=13.0 ms)

    Figure  13.  Numerical predictions of damage and failure due to penetration followed by explosion at a typical time (t=13.0 ms)

    图  14  先侵彻后爆炸典型时刻的数值计算结果(t=13.5 ms)

    Figure  14.  Numerical predictions of damage and failure due to penetration followed by explosion at a typical time (t=13.5 ms)

    图  15  先侵彻后爆炸典型时刻的数值计算结果(t=14.0 ms)

    Figure  15.  Numerical predictions of damage and failure due to penetration followed by explosion at a typical time (t=14.0 ms)

    图  16  先侵彻后爆炸典型时刻的数值计算结果(t=15.0 ms)

    Figure  16.  Numerical predictions of damage and failure due to penetration followed by explosion at a typical time (t=15.0 ms)

    图  17  弹头破片二次侵彻时程曲线

    Figure  17.  Time-history curves of the projectile nose fragment during secondary penetration

    表  1  Kong-Fang混凝土材料模型参数

    Table  1.   Parameters of the Kong-Fang concrete material model

    a1a2a3a1ya2yN
    0.585 70.025/fc0.50.908 80.075/fc1.0
    b1b2b3λm状态方程来源
    1.61.01.08.7×10−5文献[15-17]
    下载: 导出CSV
  • [1] FANG Q, WU H. Concrete structures under projectile impact [M]. Singapore: Springer, 2017: 255−321.
    [2] WU H, PENG Y, KONG X Z. Notes on projectile impact analyses [M]. Singapore: Springer, 2019: 167−240.
    [3] 左魁, 张继春, 曾宪明, 等. 重复爆炸条件下地冲击效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3378–3383. DOI: 10.3321/j.issn:1000-6915.2007.z1.119.

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on underground shock effects under repeated explosions [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3378–3383. DOI: 10.3321/j.issn:1000-6915.2007.z1.119.
    [4] 左魁, 张继春, 王启睿, 等. 重复爆炸条件下岩石介质破坏效应试验研究 [J]. 岩石力学与工程学报, 2008, 27(1): 2675–2680.

    ZUO K, ZHANG J C, WANG Q R, et al. Experimental research on rock breakage effect under repeated explosions [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 2675–2680.
    [5] LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [6] 左魁, 曾宪明, 王启睿, 等. 钻地模型弹对岩石模拟材料二次侵彻试验 [J]. 解放军理工大学学报(自然科学版), 2007, 8(6): 626–629. DOI: 10.3969/j.issn.1009-3443.2007.06.012.

    ZUO K, ZENG X M, WANG Q R, et al. Second time penetration of earth-penetrating model projectile in rock medium [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(6): 626–629. DOI: 10.3969/j.issn.1009-3443.2007.06.012.
    [7] 左魁, 张继春, 曾宪明, 等. BLU-109B模型弹在岩石介质中成坑效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on formation of craters in rock with BLU-109B earth penetrating model projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.
    [8] 邓国强, 杨秀敏. 钻地弹重复打击效应现场试验研究 [J]. 防护工程, 2012, 34(5): 1–5.

    DENG G Q, YANG X M. Experimental investigation into damage effects of repeated attacks of precision-guided penetration weapons [J]. Protective Engineering, 2012, 34(5): 1–5.
    [9] 梁龙河, 王政, 曹菊珍. 长杆弹对混凝土的侵爆效应 [J]. 爆炸与冲击, 2008, 28(5): 415–420. DOI: 10.11883/1001-1455(2008)05-0415-06.

    LIANG L H, WANG Z, CAO J Z. Damaging effect of concrete by penetration and explosion of a long-rod projectile [J]. Explosion and Shock Waves, 2008, 28(5): 415–420. DOI: 10.11883/1001-1455(2008)05-0415-06.
    [10] 曾亮, 王伟力, 朱建方. BLU-113钻地战斗部侵彻爆炸联合效应数值模拟 [C]//第七届全国工程结构安全防护学术会议论文集. 宁波: 中国力学学会, 2009: 210−214.
    [11] 杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析 [J]. 中南大学学报(自然科学版), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.

    YANG G D, WANG G H, LU W B, et al. Damage characteristics of concrete structures under the combined loadings of penetration and explosion [J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.
    [12] YANG G D, WANG G H, LU W B, et al. Combined effects of penetration and explosion on damage characteristics of a mass concrete target [J]. Journal of Vibroengineering, 2018, 20(4): 1632–1651. DOI: 10.21595/jve.2017.18522.
    [13] 冯春, 李世海, 郝卫红, 等. 基于CDEM的钻地弹侵彻爆炸全过程数值模拟研究 [J]. 振动与冲击, 2017, 36(13): 11–18; 26. DOI: 10.13465/j.cnki.jvs.2017.13.002.

    FENG C, LI S H, HAO W H, et al. Numerical simulation for penetrating and blasting process of EPW based on CDEM [J]. Journal of Vibration and Shock, 2017, 36(13): 11–18; 26. DOI: 10.13465/j.cnki.jvs.2017.13.002.
    [14] 邓国强, 杨秀敏. 工程岩体中多弹重复打击效应的数值模拟分析 [J]. 爆炸与冲击, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.

    DENG G Q, YANG X M. Numerical simulation of the effect of multiply EPW into engineering rock [J]. Explosion and Shock Waves, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.
    [15] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [16] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [17] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [18] HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
    [19] YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
    [20] HUANG X P, KONG X Z, HU J, et al. The influence of free water content on ballistic performances of concrete targets [J]. International Journal of Impact Engineering, 2020, 139: 103530. DOI: 10.1016/j.ijimpeng.2020.103530.
    [21] KONG X Z, FANG Q, ZHANG J H, et al. Numerical prediction of dynamic tensile failure in concrete by a corrected strain-rate dependent nonlocal material model [J]. International Journal of Impact Engineering, 2020, 137: 103445. DOI: 10.1016/j.ijimpeng.2019.103445.
    [22] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010−2010 [S]. 北京: 中国建筑工业出版社, 2015: 209−215.
    [23] KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [24] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
    [25] MAY P I, FORMATN K. LS-DYNA® keyword user’s manual: version 971 [M]. Livermore, USA: Livermore Software Technology Corporation, 2007.
    [26] 逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22.

    PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22.
    [27] RABCZUK T, BELYTSCHKO T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29/30): 2777–2799. DOI: 10.1016/j.cma.2006.06.020.
    [28] 张海英, 段卓平, 刘彦, 等. 有限厚混凝土靶内部爆炸震塌贯穿研究 [J]. 北京理工大学学报, 2013, 33(5): 441–444; 550. DOI: 10.3969/j.issn.1001-0645.2013.05.001.

    ZHANG H Y, DUAN Z P, LIU Y, et al. Study on the collapse perforation of thick concrete targets under internal explosion [J]. Transactions of Beijing Institute of Technology, 2013, 33(5): 441–444; 550. DOI: 10.3969/j.issn.1001-0645.2013.05.001.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  372
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-12-01
  • 修回日期:  2021-05-24
  • 网络出版日期:  2021-12-02
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回