轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究

余毅磊 蒋招绣 王晓东 杜成鑫 杜忠华 高光发

余毅磊, 蒋招绣, 王晓东, 杜成鑫, 杜忠华, 高光发. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究[J]. 爆炸与冲击, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134
引用本文: 余毅磊, 蒋招绣, 王晓东, 杜成鑫, 杜忠华, 高光发. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究[J]. 爆炸与冲击, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134
YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, DU Chengxin, DU Zhonghua, GAO Guangfa. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion And Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134
Citation: YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, DU Chengxin, DU Zhonghua, GAO Guangfa. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion And Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134

轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究

doi: 10.11883/bzycj-2021-0134
基金项目: 国家自然科学基金(11772160, 11472008, 11802001);冲击与安全工程教育部重点实验室开放基金(CJ202006)。
详细信息
    作者简介:

    余毅磊(1997- ),男,博士研究生,yileiyu@njust.edu.cn

    通讯作者:

    高光发(1980- ),男,博士,教授,gfgao@ustc.edu.cn

  • 中图分类号: O383;TJ012.4

Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration

  • 摘要: 为探讨轻型陶瓷复合装甲抗侵彻过程中陶瓷的碎裂行为,采用12.7 mm穿燃弹对不同背板厚度及陶瓷厚度下陶瓷/金属复合装甲进行弹道冲击试验。通过观测回收的靶体陶瓷宏观破坏特征,分析不同厚度组合与陶瓷主要破坏特征之间的关系;并通过对陶瓷碎块的多级筛分称重,分析不同厚度组合下陶瓷面板的碎块尺度分布规律。结果表明,陶瓷锥是陶瓷面板的主要破坏形态,其宏观裂纹主要有:径向裂纹、环向裂纹和锥形裂纹。陶瓷锥内可细分为由高压缩应力引起的粉末状较小陶瓷碎块组成的陶瓷粉碎锥和由应力波造成的较大片状陶瓷碎块组成的陶瓷破碎锥。冲击后陶瓷锥内陶瓷碎片尺度分布满足Rosin-Rammler分布模型,当背板厚度增大时,陶瓷半锥角增大,导致陶瓷锥整体体积增大,破碎区占比亦增大,产生的陶瓷碎块以大粒径碎块为主,陶瓷锥内整体破碎尺度增大。当陶瓷厚度增大时,陶瓷锥半锥角及径向裂纹数量基本不变,陶瓷锥内粉碎区占比增大,整体破碎尺度减小。
  • 图  1  试验现场设置

    Figure  1.  Test setup

    图  2  陶瓷/金属复合靶板和回收箱

    Figure  2.  Schematic of ceramic/metal composite target plate structure and recovery box

    图  3  陶瓷面板破坏形貌(试验C12-B5-1)

    Figure  3.  Destruction morphology of a ceramic panel (test C12-B5-1)

    图  4  背板厚度对陶瓷半锥角及径向裂纹的影响

    Figure  4.  Effect of back plate thickness on the fracture cone angle and the numbers of radial cracks of ceramics

    图  5  陶瓷厚度对陶瓷半锥角及径向裂纹的影响

    Figure  5.  Effect of ceramic thickness on the fracture cone angle and the number of radial cracks of ceramic

    图  6  回收的陶瓷粉末(试验C12-B5-1)

    Figure  6.  Recycled ceramic debris (test C12-B5-1)

    图  7  陶瓷锥形成具体过程示意图

    Figure  7.  The specific process of ceramic cone formation

    图  8  不同背板厚度下陶瓷碎块粒径质量分布

    Figure  8.  Mass distribution of ceramic fragment sizes under different back plate thicknesses

    图  10  不同背板厚度下碎块累计质量分布

    Figure  10.  Accumulated mass distribution of fragments under different back plate thicknesses

    图  11  不同背板厚度下碎块平均特征尺寸和幂指数系数

    Figure  11.  Average characteristic size and power-exponential coefficient of fragments under different back plate thicknesses

    图  9  不同背板厚度下陶瓷碎块粒径质量分布百分比

    Figure  9.  Mass percentage distribution of ceramic fragment sizes under different back plate thicknesses

    图  12  不同陶瓷厚度下陶瓷碎块粒径质量分布百分比

    Figure  12.  Mass percentage distribution of ceramic fragment size under different ceramic thicknesses

    图  13  不同陶瓷厚度下碎块累计质量分布

    Figure  13.  Accumulated mass distribution of fragments under different ceramic thicknesses

    图  14  不同陶瓷厚度下碎块平均特征尺寸和幂指数系数

    Figure  14.  Average characteristic size and power-exponential coefficient of fragments under different ceramic thicknesses

    表  1  弹体和背板材料力学性能

    Table  1.   Mechanical properties of the projectile and backplane materials

    材料弹性模量/GPa密度/(kg·m−3泊松比屈服强度/MPa
    T12A钢197.5778300.2953 544
    2024铝合金 72.8027040.300 224
    下载: 导出CSV

    表  2  SiC陶瓷材料性能

    Table  2.   Properties of the SiC ceramic

    密度/(kg·m−3弹性模量/GPa剪切模量/GPa泊松比努氏硬度断裂韧性/(MPa·m1/2
    3196420179.50.1725005.3
    下载: 导出CSV

    表  3  试验靶板结构及主要试验结果

    Table  3.   Target structure and main test results

    试验编号靶板厚度/mm初始弹体毁伤状况
    SiC陶瓷面板2024铝合金背板质量/g着靶速度/(m·s−1
    C12-B4-112448.41492.8±2完全穿透
    C12-B5-112548.32505.3±2完全穿透
    C12-B6-112648.28495.6±2完全穿透
    C12-B8-112848.22486.9±2未穿透
    C8-B5-18548.28459.6±2完全穿透
    C10-B5-110548.37466.5±2完全穿透
    C12-B5-212548.26479.2±2完全穿透
    C15-B5-115548.35480.2±2未穿透
    下载: 导出CSV

    表  4  影响陶瓷半锥角及径向裂纹的各因素数理统计结果

    Table  4.   Mathematical statistics of the factors affecting the fracture cone angle of ceramics and radial cracks

    影响因素试验编号锥顶部直径D1/mm锥底部直径D2/mm半锥角/(°)径向裂纹数
    样本数量样本均值$ \stackrel{-}{\theta } $测量不确定度$\mathrm{m}\mathrm{a}\mathrm{x}\{|\bar{\theta }-\theta |\}$
    背板厚度C12-B4-133.6±0.2 98.5±0.21069.712.1313
    C12-B5-132.1±0.2104.2±0.21271.571.5610
    C12-B6-133.7±0.2113.6±0.21473.281.299
    C12-B8-132.3±0.2115.8±0.21973.873.08
    陶瓷厚度C8-B5-131.3±0.2 82.2±0.21172.572.3410
    C10-B5-131.8±0.2 93.6±0.21372.081.8311
    C12-B5-232.0±0.2104.3±0.21271.572.3810
    C15-B5-131.5±0.2126.2±0.21172.431.5710
     注:试验C12-B8-1由于弹丸未穿透陶瓷复合装甲,导致陶瓷严重破碎,难以统计径向裂纹。
    下载: 导出CSV
  • [1] LÓPEZ-PUENTE J, ARIAS A, ZAERA R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours: an experimental and numerical study [J]. International journal of impact engineering, 2005, 32(1−4): 321–336. DOI: 10.1016/j.ijimpeng.2005.07.014.
    [2] MA T, DU H, YAN Z L, et al. Mechanical property and ballistic performance of silicon carbide [J]. Key Engineering Materials, 2010, 434−435: 72–75. DOI: 10.4028/www.scientific.net/KEM.434-435.72.
    [3] CUI F, WU G, TIAN M, et al. Effect of ceramic properties and depth-of-penetration test parameters on the ballistic performance of armour ceramics [J]. Defence Science Journal, 2017, 67(3): 260. DOI: 10.14429/dsj.67.10664.
    [4] SAVIO S G, MADHU V, GOGIA A K. Ballistic performance of alumina and zirconia-toughened alumina against 7.62 armour piercing projectile [J]. Defence Science Journal, 2014, 64(5): 477. DOI: 10.14429/dsj.64.6745.
    [5] SAVIO S G, MADHU V. Ballistic performance evaluation of ceramic tiles with respect to projectile velocity against hard steel projectile using DOP test [J]. International Journal of Impact Engineering, 2018, 113: 161–167. DOI: 10.1016/j.ijimpeng.2017.11.020.
    [6] MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure: Part 1 [J]. Ceramics International, 2010, 36(7): 2103–2115. DOI: 10.1016/j.ceramint.2010.05.021.
    [7] MADHU V, RAMANJANEYULU K, BHAT T B, et al. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1−4): 337–350. DOI: 10.1016/j.ijimpeng.2005.03.004.
    [8] NAIR N S, KUMAR C V S, NAIK N K. Ballistic impact performance of composite targets [J]. Materials & Design, 2013, 51: 833–846.
    [9] LIU W, CHEN Z, CHEN Z, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor [J]. Materials & Design, 2015, 87: 421–427.
    [10] 王文俊. 陶瓷复合装甲防弹机理及防弹性能 [J]. 北京理工大学学报, 1997, 17(2): 147–150.

    WANG W J. Bulletproof mechanism and bulletproof performance of ceramic composite armor [J]. Transaction of Beijing Institute of Technology, 1997, 17(2): 147–150.
    [11] 仲伟虹, 张佐光, 梁志勇. 轻质陶瓷/复合材料装甲抗弹机理的研究 [J]. 兵器材料科学与工程, 1998, 21(3): 19–22.

    ZHONG W H, ZHANG Z G, LIANG Z Y. Study on anti-ballistic mechanism of lightweight ceramic/composite armor [J]. Ordnance Material Science and Engineering, 1998, 21(3): 19–22.
    [12] HOGAN J D, FARBANIEC L, MALLICK D, et al. Fragmentation of an advanced ceramic under ballistic impact: mechanisms and microstructure [J]. International journal of impact engineering, 2017, 102: 47–54. DOI: 10.1016/j.ijimpeng.2016.12.008.
    [13] SAVIO S G, RAMANJANEYULU K, MADHU V, et al. An experimental study on ballistic performance of boron carbide tiles [J]. International Journal of Impact Engineering, 2011, 38(7): 535–541. DOI: 10.1016/j.ijimpeng.2011.01.006.
    [14] AKELLA K, NAIK N K. Composite armour: a review [J]. Journal of the Indian Institute of Science, 2015, 95(3): 297–312. DOI: http://journal.iisc.ernet.in/index.php/iisc/article/view/4574/0.
    [15] 侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究 [J]. 兵工学报, 2013, 34(1): 105–114.

    HOU H L, ZHU X, LI W. Investigation on bullet proof mechanism of light ceramic/steel composite armor [J]. Acta Armamentarii, 2013, 34(1): 105–114.
    [16] 蒋志刚, 曾首义, 申志强. 轻型陶瓷复合装甲结构研究进展 [J]. 兵工学报, 2010, 31(5): 603–610.

    JIANG Z G, ZENG S Y, SHEN Z Q. Research progress on lightweight ceramic composite armor structure [J]. Acta Armamentarii, 2010, 31(5): 603–610.
    [17] 蒋志刚, 谭清华, 曾首义, 等. 陶瓷/金属复合靶板优化设计 [J]. 弹道学报, 2006(2): 69–71. DOI: 10.3969/j.issn.1004-499X.2006.02.017.

    JIANG Z G, TAN Q H, ZENG S Y, et al. Optimization of ceramic/metal composite targets [J]. Journal of Ballistics, 2006(2): 69–71. DOI: 10.3969/j.issn.1004-499X.2006.02.017.
    [18] CAO J, LAI J, ZHOU J, et al. Experiments and simulations of the ballistic response of ceramic composite armors [J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2783–2793. DOI: 10.1007/s12206-020-0611-8.
    [19] JIUSTI J, KAMMER E H, NECKEL L, et al. Ballistic performance of Al2O3 mosaic armors with gap-filling materials [J]. Ceramics International, 2017, 43(2): 2697–2704. DOI: 10.1016/j.ceramint.2016.11.087.
    [20] GOEL R, KULKARNI M D, PANDYA K S, et al. Stress wave micro–macro attenuation in ceramic plates made of tiles during ballistic impact [J]. International Journal of Mechanical Sciences, 2014, 83: 30–37. DOI: 10.1016/j.ijmecsci.2014.03.020.
    [21] MIRKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: Fabrication, testing and micromechanics of architectured ceramic panels for impact applications [J]. International Journal of Solids and Structures, 2019, 158: 52–65. DOI: 10.1016/j.ijsolstr.2018.08.025.
    [22] SHOCKEY D A, MARCHAND A H, SKAGGS S R, et al. Failure phenomenology of confined ceramic targets and impacting rods [J]. International Journal of Impact Engineering, 1990, 9(3): 263–275. DOI: 10.1016/0734-743X(90)90002-D.
    [23] WHITWORTH M B, HUNTLEY J M, FIELD J E. High-speed photography of high-resolution moire patterns [C]// 19th Intl Congress on High-Speed Photography and Photonics. International Society for Optics and Photonics, 1991, 1358: 677−682. DOI: 10.1117/12.23951.
    [24] TRACY C, SLAVIN M, VIECHNICKI D. Ceramic fracture during ballistic impact [J]. Fractography of Glasses and Ceramics Westerville, 1988, 22(1): 295–306.
    [25] 余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响[J/OL]. 北京理工大学学报, 2021(8): 1−8. DOI: 10.15918/j.tbit1001-0645.2020.107.

    YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J/OL]. Transaction of Beijing Institute of Technology, 2021(8): 1−8. DOI: 10.15918/j.tbit1001-0645.2020.107.
    [26] MEYER JR H W, ABELN T, BINGERT S, et al. Crack behavior of ballistically impacted ceramic [J]. AIP Conference Proceedings, 2000, 505(1): 1109−1112. DOI: 10.1063/1.1303659.
    [27] 刘立胜, 张清杰. 冲击波在陶瓷与梯度材料界面上的传播特性 [J]. 武汉理工大学学报, 2003(8): 1–4. DOI: 10.3321/j.issn:1671-4431.2003.08.001.

    LIU L S, ZHANG Q J. Propagation characteristics of shock waves at the interface between ceramics and gradient materials [J]. Journal of Wuhan university of technology, 2003(8): 1–4. DOI: 10.3321/j.issn:1671-4431.2003.08.001.
    [28] GONZÁLEZ-TELLO P, CAMACHO F, VICARIA J M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis [J]. Powder Technology, 2008, 186(3): 278–281. DOI: 10.1016/j.powtec.2007.12.011.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  189
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-06-08
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回