粗骨料粒径对混凝土动态压缩行为的影响研究

王江波 丁俊升 王晓东 杜忠华 高光发

王江波, 丁俊升, 王晓东, 杜忠华, 高光发. 粗骨料粒径对混凝土动态压缩行为的影响研究[J]. 爆炸与冲击, 2022, 42(2): 023101. doi: 10.11883/bzycj-2021-0147
引用本文: 王江波, 丁俊升, 王晓东, 杜忠华, 高光发. 粗骨料粒径对混凝土动态压缩行为的影响研究[J]. 爆炸与冲击, 2022, 42(2): 023101. doi: 10.11883/bzycj-2021-0147
WANG Jiangbo, DING Junsheng, WANG Xiaodong, DU Zhonghua, GAO Guangfa. Effect of coarse aggregate size on the dynamic compression behavior of concrete[J]. Explosion And Shock Waves, 2022, 42(2): 023101. doi: 10.11883/bzycj-2021-0147
Citation: WANG Jiangbo, DING Junsheng, WANG Xiaodong, DU Zhonghua, GAO Guangfa. Effect of coarse aggregate size on the dynamic compression behavior of concrete[J]. Explosion And Shock Waves, 2022, 42(2): 023101. doi: 10.11883/bzycj-2021-0147

粗骨料粒径对混凝土动态压缩行为的影响研究

doi: 10.11883/bzycj-2021-0147
基金项目: 国家自然科学基金(11772160,11472008,11802141)
详细信息
    作者简介:

    王江波(1993- ),男,博士研究生,wjbo1993@163.com

    通讯作者:

    高光发(1980- ),男,博士,教授,gfgao@ustc.edu.cn

  • 中图分类号: O347.3

Effect of coarse aggregate size on the dynamic compression behavior of concrete

  • 摘要: 粗骨料作为混凝土材料组成最主要的部分,对混凝土力学性能和破坏模式有着很重要的影响。为了研究粗骨料平均粒径对混凝土动态力学性能的影响规律,针对不同平均粗骨料平均粒径(6、12、24 mm)的混凝土和砂浆材料进行了一系列SHPB试验,得到了不同应变率下各试件的应力-应变曲线,并对每种材料的动态增长因子(dynamic increase factor,DIF)与应变率的对数进行了线性拟合。结果表明:砂浆和混凝土材料的抗压强度具有明显的应变率效应,其动态抗压强度随着应变率的增加而逐渐增大,应力-应变曲线呈现相似的变化趋势;在相同的动态应变率条件下,平均粗骨料粒径为12 mm的混凝土的动态抗压强度最大,这与准静态条件下砂浆抗压强度最大截然不同;不同粗骨料粒径混凝土材料的应变率强化系数均大于砂浆材料,且随着粗骨料无量纲尺寸的增大,混凝土材料的应变率强化因子呈现先增大后减小的趋势。
  • 图  1  准静态压缩试验

    Figure  1.  Quasi-static compression test

    图  2  准静态压缩下的应力-应变曲线

    Figure  2.  Quasi-static compressive stress-strain curves

    图  3  SHPB试验装置

    Figure  3.  Schematic of the SHPB test system

    图  4  试验时整形器与试件位置图

    Figure  4.  Position of the pulse shaper and the specimen in the experiment

    图  5  典型试件的试验结果

    Figure  5.  Typical test results of specimens

    图  6  试件的动态应力平衡状态

    Figure  6.  Dynamic stress equilibrium in the specimens

    图  7  不同应变率下试件的动态应力-应变曲线

    Figure  7.  Dynamic stress-strain curves of specimens at various strain rates

    图  8  不同试件压缩强度与应变率的关系图

    Figure  8.  Relationship between the compressive strength and the strain rate of different specimens

    图  9  试验动态增长因子与不同模型对比

    Figure  9.  Comparison of DIFs with different models

    图  10  不同骨料粒径的混凝土动态增长因子与应变率关系

    Figure  10.  Fitting curves of the dynamic increase factors and the strain rate for different aggregate sizes

    图  11  无量纲粗骨料尺寸与应变率强化因子的关系

    Figure  11.  Relationship between the dimensionless coarse aggregate size and the strain rate strengthening factor

    表  1  不同材料试样的配比

    Table  1.   Mix proportion of different grades of mortar and concrete

    试件w(水泥)/(kg·m−3w(砂子)/(kg·m−3w(粗骨料)/(kg·m−3w(矿粉)(kg·m−3w(水)/(kg·m−3w(减水剂)/(kg·m−3
    M607141000222232.22
    C60547 767897171711.70
    下载: 导出CSV

    表  2  SHPB装置中部件的主要参数

    Table  2.   Specifications of the SHPB experimental system

    部件材质几何参数物理参数
    直径/mm长度/mm${E_{\text{b}}}$/GPa${\rho _{\text{b}}}$/(g·cm−3)${\nu _{\text{b}}}$$ {c_{\text{b}}} $/(m·s−1)
    撞击杆40Cr钢80500/10002107.850.225210
    入射杆40Cr钢8060002107.850.225210
    透射杆40Cr钢8040002107.850.225210
    下载: 导出CSV

    表  3  不同试样的动态增长因子在公式中的拟合结果

    Table  3.   Fitting results of dynamic increace factors of different samples in the formula

    试样A$ {\dot \varepsilon _{\text{s}}} $/s-1R2
    M600.94300.998
    C60-G61.45300.996
    C60-G122.13300.995
    C60-G241.08300.996
    下载: 导出CSV
  • [1] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
    [2] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society B, 1949, 62(11): 676–700. DOI: 10.1088/0370-1301/62/11/302.
    [3] CHEN B, LIU J. Effect of aggregate on the fracture behavior of high strength concrete [J]. Construction and Building Materials, 2004, 18(8): 585–590. DOI: 10.1016/j.conbuildmat.2004.04.013.
    [4] CADONI E, LABIBES K, ALBERTINI C. Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels [J]. Materials and Structures, 2001, 34(235): 21–26. DOI: 10.1007/BF02482196.
    [5] ALBERTINI C, CADONI E, LABIBES K. Study of the mechanical properties of plain concrete under dynamic loading [J]. Experimental Mechanics, 1999, 39(2): 137–141. DOI: 10.1007/BF02331117.
    [6] ALBERTINI C, MONTAGNANI M. Study of the true tensile stress-strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle [J]. Le Journal de Physique IV, 1994, 04(C8): 113–118. DOI: 10.1051/jp4:1994817.
    [7] MUCIACCIA G, ROSATI G, DI LUZIO G. Compressive failure and size effect in plain concrete cylindrical specimens [J]. Construction and Building Materials, 2017, 137: 185–194. DOI: 10.1016/j.conbuildmat.2017.01.057.
    [8] WALLIN K. A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests [J]. Engineering Fracture Mechanics, 2013, 99(1): 18–29. DOI: 10.1016/j.engfracmech.2013.01.018.
    [9] UDDIN M T, MAHMOOD A H, KAMAL M R I, et al. Effects of maximum size of brick aggregate on properties of concrete [J]. Construction and Building Materials, 2017, 134: 713–726. DOI: 10.1016/j.conbuildmat.2016.12.164.
    [10] SIM J, YANG K, JEON J. Influence of aggregate size on the compressive size effect according to different concrete types [J]. Construction and Building Materials, 2013, 44(7): 716–725. DOI: 10.1016/j.conbuildmat.2013.03.066.
    [11] GRASSL P, GRÉGOIRE D, ROJAS SOLANO L, et al. Meso-scale modelling of the size effect on the fracture process zone of concrete [J]. International Journal of Solids and Structures, 2012, 49(13): 1818–1827. DOI: 10.1016/j.ijsolstr.2012.03.023.
    [12] HAO Y, HAO H, JIANG G P, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests [J]. Cement and Concrete Research, 2013, 52: 63–70. DOI: 10.1016/j.cemconres.2013.05.008.
    [13] KIM K, LEE S, CHO J. Effect of maximum coarse aggregate size on dynamic compressive strength of high-strength concrete [J]. International Journal of Impact Engineering, 2019, 125: 107–116. DOI: 10.1016/j.ijimpeng.2018.11.003.
    [14] LI M, HAO H, SHI Y, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests [J]. Construction and Building Materials, 2018, 161: 84–93. DOI: 10.1016/j.conbuildmat.2017.11.069.
    [15] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869–886. DOI: 10.1016/S0734-743X(01)00020-3.
    [16] ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures, 2008, 45(17): 4648–4661. DOI: 10.1016/j.ijsolstr.2008.04.002.
    [17] TEDESCO J W, POWELL J C, ROSS C A, et al. A strain-rate-dependent concrete material model for ADINA [J]. Computers and Structures, 1997, 64(5): 1053–1067. DOI: 10.1016/S0045-7949(97)00018-7.
    [18] ROSS C A. Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression [J]. ACI Materials Journal, 1989, 86(5): 475–481. DOI: 10.14359/2065.
    [19] COMMITTEE CEB. Fib model code for concrete structures[M]. UK: Trowbridge, Wiltshire, 2013.
    [20] BISCHOFF P, PERRY S. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
    [21] 高光发, 郭扬波. 高强混凝土动态压缩试验分析 [J]. 爆炸与冲击, 2019, 39(3): 63–72. DOI: 10.11883/bzycj-2017-0405.

    GAO G F, GUO Y B. Analysis of the dynamic compressive test of high strength concrete [J]. Explosion and Shock Waves, 2019, 39(3): 63–72. DOI: 10.11883/bzycj-2017-0405.
    [22] 高光发. 混凝土材料动态拉伸强度的应变率强化规律 [J]. 高压物理学报, 2017, 31(5): 593–602. DOI: 10.11858/gywlxb.2017.05.013.

    GAO G F. Hardening effect of the strain rate on the dynamic tensile strength of the plain concrete [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593–602. DOI: 10.11858/gywlxb.2017.05.013.
    [23] 高光发. 混凝土材料动态压缩强度的应变率强化规律 [J]. 高压物理学报, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.

    GAO G F. Effect of strain-rate hardening on dynamic compressive strength of plain concrete [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.
    [24] GUO Y B, GAO G F, JING L, et al. Response of high-strength concrete to dynamic compressive loading [J]. International Journal of Impact Engineering, 2017, 108: 114–135. DOI: 10.1016/j.ijimpeng.2017.04.015.
    [25] FLORES-JOHNSON E A, LI Q M. Structural effects on compressive strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2017, 109: 408–418. DOI: 10.1016/j.ijimpeng.2017.08.003.
    [26] LU Y B, LI Q M. Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials [J]. International Journal of Protective Structures, 2010, 1(3): 363–390. DOI: 10.1260/2041-4196.1.3.363.
    [27] HAO H, HAO Y, LI J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1193–1223. DOI: 10.1177/1369433216656430.
    [28] COTSOVOS D M, PAVLOVIĆ M N. Numerical investigation of concrete subjected to compressive impact loading: Part 1: a fundamental explanation for the apparent strength gain at high loading rates [J]. Computers and Structures, 2008, 86(1−2): 145–163. DOI: 10.1016/j.compstruc.2007.05.014.
    [29] MA H, YUE C, YU H, et al. Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete [J]. International Journal of Impact Engineering, 2020, 137: 103466. DOI: 10.1016/j.ijimpeng.2019.103466.
    [30] HARTMANN T, PIETZSCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1(4): 443–468. DOI: 10.1260/2041-4196.1.4.443.
    [31] LEE S, KIM K, PARK J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113: 191–202. DOI: 10.1016/j.ijimpeng.2017.11.015.
    [32] AL-SALLOUM Y, ALMUSALLAM T, IBRAHIM S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments [J]. Cement and Concrete Composites, 2015, 55: 34–44. DOI: 10.1016/j.cemconcomp.2014.07.011.
    [33] 金浏, 杨旺贤, 余文轩, 等. 骨料粒径对混凝土动态拉伸强度及尺寸效应影响分析 [J]. 振动与冲击, 2020, 39(9): 24–34. DOI: 10.13465/j.cnki.jvs.2020.09.004.

    JIN L, YANG W, YU W, et al. Influence of aggregate size on the dynamic tensile strength and size effect of concrete [J]. Journal of Vibration and Shock, 2020, 39(9): 24–34. DOI: 10.13465/j.cnki.jvs.2020.09.004.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  244
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-07-13
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回