45钢柱壳爆炸膨胀断裂的SPH模拟分析

吴思思 董新龙 俞鑫炉

吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析[J]. 爆炸与冲击, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172
引用本文: 吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析[J]. 爆炸与冲击, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172
WU Sisi, DONG Xinlong, YU Xinlu. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method[J]. Explosion And Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172
Citation: WU Sisi, DONG Xinlong, YU Xinlu. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method[J]. Explosion And Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172

45钢柱壳爆炸膨胀断裂的SPH模拟分析

doi: 10.11883/bzycj-2021-0172
基金项目: 国家自然科学基金面上项目(11672143);国家自然科学基金重点项目(11932018)
详细信息
    作者简介:

    吴思思(1996- ),女,硕士研究生,597108926@qq.com

    通讯作者:

    董新龙(1964- ),男,博士,教授,博士生导师,dongxinlong@nbu.edu.cn

  • 中图分类号: O382

An investigating on explosive expanding fracture of 45 steel cylinders by SPH method

  • 摘要: 金属柱壳爆炸膨胀断裂存在拉伸、剪切及拉剪混合等多种断裂模式,目前其物理机制及影响因素还不清晰。本文中采用光滑粒子流体动力学方法(smoothed particle hydrodynamics, SPH)对45钢柱壳在JOB-9003及RHT-901不同装药条件下的外爆实验进行了数值模拟,探讨柱壳在不同装药条件下发生的剪切断裂、拉剪混合断裂模式及其演化过程,模拟结果与实验结果一致。SPH数值模拟结果表明:在爆炸加载阶段,随着冲击波在柱壳内、外壁间来回反射形成二次塑性区,沿柱壳壁厚等效塑性应变演化呈凸形分布,壁厚中部区域等效塑性应变较内、外壁大;在较高爆炸压力(JOB-9003)作用下,柱壳断裂发生在爆轰波加载阶段,损伤裂纹从塑性应变积累较大的壁厚中部开始沿剪切方向向内、外壁扩展,形成剪切型断裂模式;而在RHT-901空心炸药加载下,虽然裂纹仍从壁厚中部开始沿剪切方向扩展,但随后柱壳进入自由膨胀阶段,未断区域处于拉伸应力状态,柱壳局部发生结构失稳,形成类似“颈缩”现象,裂纹从剪切方向转向沿颈缩区向外扩展,呈现拉剪混合断裂模式。拉伸裂纹占截面的比例与柱壳结构失稳时刻相关。可见,柱壳断裂演化是一个爆炸冲击波与柱壳结构相互作用的过程,不能简单将其作为一系列膨胀拉伸环处理。
  • 图  1  数值计算SPH模型

    Figure  1.  SPH model with different explosive charges

    图  2  JOB9003炸药加载下柱壳膨胀断裂过程

    Figure  2.  Expanding fracture process of the explosively-driven cylindrical shell by JOB9003 charge

    图  3  柱壳外表面径向膨胀速度

    Figure  3.  The radial expanding velocity of the outer surface of cylindrical shell

    图  4  RHT-901空心炸药作用下不同R/h的柱壳膨胀断裂过程模拟结果

    Figure  4.  Simulation results on fracture process of the cylindrical shell with different R/h under RHT-901 charge

    图  5  JOB-9003炸药加载下45钢柱壳的爆炸压力、膨胀及断裂演化过程

    Figure  5.  The explosive pressure, expanding deformation and fracture for 45# steel cylindrical shellwith JOB-9003 charge

    图  6  RHT-901加载下5 mm壁厚柱壳的爆炸压力、膨胀及断裂过程

    Figure  6.  Explosive pressure, expanding deformation and fracture for 45 steel cylindrical shell (h = 5 mm) with RHT-901 charge

    图  7  RHT-901加载下4 mm壁厚柱壳的爆炸压力及断裂演化过程

    Figure  7.  Explosive pressure, fracture process for 45 steel cylindrical shell (h= 4mm) with RHT-901

    表  1  实验柱壳、加载条件及爆炸膨胀断裂实验结果[8]

    Table  1.   1The fracturecharacteristics and failure modes of 45 steel cylindersunder different explosive conditions and geological parameters[8]

    炸药药柱尺寸 试样尺寸 爆炸膨胀断裂实验结果
    外径R/mm内径r/mm内径R/mm壁厚h/mm$ {\varepsilon }_{\mathrm{c}} $$ {t}_{\mathrm{c}}/ $µs$ {\varepsilon }_{\mathrm{f}} $$ {t}_{\mathrm{f}}/ $µs$ \dot{\varepsilon }/{\mathrm{s}}^{-1} $断裂模式
    JOB-9003(实心)20 02040.407.51.3119.57.1×104纯剪切
    RHT-901(空心)30203040.248.80.4315.42.9×104拉剪混合
    5 0.187.80.3715.82.5×104拉剪混合
    下载: 导出CSV

    表  2  45钢柱壳本构参数数值[25]

    Table  2.   Constitutive parameters of 45 steel[25]

    Johnson-Cook模型Gr$ \ddot{\mathrm{u}} $neison状态方程
    A/MPaB/MPanmC$\dot{ {\varepsilon }_{0} } /{\mathrm{s} }^{-1}$c/(m·s−1)s$ {\gamma }_{0} $
    3506000.3070.8040.072×10-446001.49$ 2.17 $
    下载: 导出CSV

    表  3  炸药JWL本构方程相关参数[26]

    Table  3.   JWL EOS parameter of thecharges[26]

    炸药A/GPaB/GPaωR1R2E0/(GJ·m−3pcj/GPaρ/(kg·m−3D/(m·s−1
    JOB-9003842.021.810.284.61.351.03518848740
    RHT-901503.09.0650.354.31.107.62716587800
    下载: 导出CSV

    表  4  SPH数值模拟与实验结果比较

    Table  4.   Comparison betwwen SPH simulation and experimental results

    炸药内径R/mm壁厚h/mm方法$ {\varepsilon }_{\mathrm{c}} $tc/µs$ {\varepsilon }_{\mathrm{r}} $tr/µs$ {\varepsilon }_{\mathrm{f}} $tf/µs$ \dot{\varepsilon } $$ /{\mathrm{s}}^{-1} $断裂模式
    JOB-9003204实验0.40 7.51.3119.57.1×104双向剪切
    模拟0.377.30.37 7.31.0717.27.1×104双向剪切
    RHT-901304实验0.248.80.4315.42.9×104拉剪混合
    模拟0.3013.1 0.3113.50.4117.32.7×104拉剪混合
    5实验0.187.80.3715.82.5×104拉剪混合
    模拟0.2111.9 0.2312.80.3016.12.1×104拉剪混合
    下载: 导出CSV
  • [1] TAYLOR G I. The fragmentation of tubular bombs [M]. Cambridge: Cambridge University Press, 1963.
    [2] MEYERS M A. Dynamic behavior of materials [M]. New York: Wiley, 1994.
    [3] TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end [J]. Mechanics of Fluids, Scientific Papers of GI Taylor, 1941, 2: 277–286.
    [4] HOGGATT C R, RECHT R F. Fracture behavior of tubular bombs [J]. Journal of Applied Physics, 1968, 39(3): 1856–1862. DOI: 10.1063/1.1656442.
    [5] SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(9): 939–954. DOI: 10.1016/S0734-743X(02)00002-7.
    [6] 胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.

    HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107.
    [7] 汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
    [8] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [9] 胡八一, 董庆东, 韩长生, 等. 爆炸金属管的绝热剪切断裂宏观研究 [J]. 爆炸与冲击, 1992, 12(4): 319–325.

    HU B Y, DONG Q D, HAN C S, et al. The macroscopic study of adiabatic shear fracture of metal tubes under explosive loading [J]. Explosion and Shock Waves, 1992, 12(4): 319–325.
    [10] 胡八一, 董庆东, 韩长生, 等. 内部爆轰加载下的钢管膨胀断裂研究 [J]. 爆炸与冲击, 1993, 13(1): 49–54.

    HU B Y, DONG Q D, HAN C S, et al. Studies of expansion and fracture of explosive-filled steel cylinders [J]. Explosion and Shock Waves, 1993, 13(1): 49–54.
    [11] ZHANG Z B, HUANG F L, CAO Y, et al. A fragments mass distribution scaling relations for fragmenting shells with variable thickness subjected to internal explosive loading [J]. International Journal of Impact Engineering, 2018, 120: 79–94. DOI: 10.1016/j.ijimpeng.2018.05.013.
    [12] 罗渝松, 李伟兵, 陈志闯, 等. 内爆加载下金属柱壳的冻结回收方法 [J]. 爆炸与冲击, 2020, 40(10): 104101. DOI: 10.11883/bzycj-2020-0041.

    LUO Y S, LI W B, CHEN Z C, et al. A freezing recovery method for metallic cylinder shells under internal explosive loading [J]. Explosion and Shock Waves, 2020, 40(10): 104101. DOI: 10.11883/bzycj-2020-0041.
    [13] GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [14] 潘顺吉, 俞鑫炉, 董新龙. 不同载荷下TA2钛合金柱壳爆炸碎裂的实验研究 [J]. 高压物理学报, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.

    PAN S J, YU X L, DONG X L. Experimental study of fragmentation behavior of exploded TA2 alloy cylinderswith varied charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.
    [15] 张世文, 金山, 刘仓理. 含缺陷厚壁圆管爆轰膨胀断裂的数值模拟 [J]. 应用力学学报, 2010, 27(3): 622–625.

    ZHANG S W, JIN S, LIU C L. Simulation of the dynamic expanding process of thick-walled cylinder with defects [J]. Chinese Journal of Applied Mechanics, 2010, 27(3): 622–625.
    [16] 金山, 张世文, 龙建华. 缺陷对圆管膨胀断裂影响的实验研究 [J]. 高压物理学报, 2011, 25(2): 188–192. DOI: 10.11858/gywlxb.2011.02.017.

    JIN S, ZHANG S W, LONG J H. Experimental study on the influences of defects on expanding fracture of a metal cylinder [J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 188–192. DOI: 10.11858/gywlxb.2011.02.017.
    [17] 俞鑫炉, 董新龙, 潘顺吉. 不同爆炸载荷下TA2钛合金圆管膨胀破坏过程 [J]. 爆炸与冲击, 2018, 38(1): 148–154. DOI: 10.11883/bzycj-2017-0014.

    YU X L, DONG X L, PAN S J. Fracture behaviors of explosively driven TA2 alloy cylinders under different loadings [J]. Explosion and Shock Waves, 2018, 38(1): 148–154. DOI: 10.11883/bzycj-2017-0014.
    [18] LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior ofan explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
    [19] LIU G R, LIU M B, LI S. Smoothed particle hydrodynamics -a meshfree method [M]. NM (United States): World Scientific, 2004.
    [20] REMINGTON T P, OWEN J M, NAKAMURA A M, et al. Numerical simulations of laboratory-scale, hypervelocity-impact experiments for asteroid-deflection code validation [J]. Earth and Space Science, 2020, 7(4): e2018EA000474. DOI: 10.1029/2018EA000474.
    [21] JANKOWIAK T, ŁODYGOWSKI T. Smoothed particle hydrodynamics versus finite element method for blast impact [J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(1): 111–121. DOI: 10.2478/bpasts-2013-0009.
    [22] KONG X S, WU W G, LI J, et al. A numerical investigation on explosive fragmentation of metal casing using smoothed particle hydrodynamic method [J]. Materials & Design, 2013, 51: 729–741. DOI: 10.1016/j.matdes.2013.04.041.
    [23] 任国武, 郭昭亮, 张世文, 等. 金属柱壳膨胀断裂的实验与数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.

    REN G W, GUO Z L, ZHANG S W, et al. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell [J]. Explosion and Shock Waves, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.
    [24] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.
    [25] 胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192.

    HU C M, HE H L, HU S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192.
    [26] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.
    [27] 郑柯, 董新龙. 20钢柱壳外爆拉-剪切型断裂研究 [J]. 兵器材料科学与工程, 2018, 41(3): 61–64. DOI: 10.14024/j.cnki.1004-244x.20180428.005.

    ZHENG K, DONG X L. Tensile-shear failure of 20 steel cylindrical shells subjected to explosive loading [J]. Ordnance Material Science and Engineering, 2018, 41(3): 61–64. DOI: 10.14024/j.cnki.1004-244x.20180428.005.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  479
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-06-03
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回