超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究

吴平 周飞 李庆华 徐世烺 陈柏锟

吴平, 周飞, 李庆华, 徐世烺, 陈柏锟. 超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究[J]. 爆炸与冲击, 2022, 42(3): 033301. doi: 10.11883/bzycj-2021-0178
引用本文: 吴平, 周飞, 李庆华, 徐世烺, 陈柏锟. 超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究[J]. 爆炸与冲击, 2022, 42(3): 033301. doi: 10.11883/bzycj-2021-0178
WU Ping, ZHOU Fei, LI Qinghua, XU Shilang, CHEN Bokun. Experimental study on the resistance of the ultra high toughness cementitious composites material-fiber concrete composite targets subjected to twice projectiles impact[J]. Explosion And Shock Waves, 2022, 42(3): 033301. doi: 10.11883/bzycj-2021-0178
Citation: WU Ping, ZHOU Fei, LI Qinghua, XU Shilang, CHEN Bokun. Experimental study on the resistance of the ultra high toughness cementitious composites material-fiber concrete composite targets subjected to twice projectiles impact[J]. Explosion And Shock Waves, 2022, 42(3): 033301. doi: 10.11883/bzycj-2021-0178

超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究

doi: 10.11883/bzycj-2021-0178
基金项目: 国家自然科学基金(51678522, 51622811)
详细信息
    作者简介:

    吴 平(1993- ),男,博士研究生,21712038@zju.edu.cn

    通讯作者:

    李庆华(1981- ),女,博士,教授,liqinghua@zju.edu.cn

  • 中图分类号: O383

Experimental study on the resistance of the ultra high toughness cementitious composites material-fiber concrete composite targets subjected to twice projectiles impact

  • 摘要: 超高韧性水泥基复合材料(ultra high toughness cementitious composites, UHTCC)具有超高的韧性、良好的耐久性和优异的耗能效果,这些特性使得UHTCC在防护工程中具有广阔的应用前景。为了更好地研究UHTCC与纤维混凝土组合结构在二次打击条件下的抗侵彻性能,首先测量了UHTCC和聚乙烯醇纤维增强混凝土(polyvinl alcohol fiber reinforced concrete, FRC)的基本力学参数。然后采用25 mm口径的弹道滑膛炮对直径为750 mm、高为600 mm的圆柱形UHTCC靶体、FRC靶体、UHTCC-FRC组合靶体(UHTCC-FRC composite target)进行了弹体速度为550 m/s的二次侵彻试验,得到了弹体和三类靶体的破坏数据,包括弹体的侵彻深度、弹体的磨蚀、靶体迎弹面的开坑直径和面积、弹坑深度、迎弹面的裂纹数量以及裂纹最大宽度。在此基础上分析了骨料、结构形式和两次打击的间距对UHTCC-FRC组合靶体抗侵彻性能的影响。结果表明:相同试验条件下,与普通混凝土和超高性能混凝土相比,UHTCC能够有效的减小迎弹面的开坑直径,但会增加弹体侵彻深度;将50 mm的UHTCC置于组合靶的迎弹面可以有效地减少迎弹面的开坑直径;弹体二次侵彻深度大于弹体一次侵彻深度,靶体在二次冲击下的开坑面积小于靶体初次冲击下的开坑面积。
  • 图  1  试验布置示意图

    Figure  1.  Schematic diagram of test layout

    图  2  试验靶体的结构形式

    Figure  2.  Structure types of test target

    图  3  UHTCC直接拉伸测试

    Figure  3.  UHTCC uniaxial tensile test

    图  4  FRC直接拉伸测试

    Figure  4.  FRC uniaxial tensile test

    图  5  弹体尺寸

    Figure  5.  The size of projectile

    图  6  高速摄影记录弹体撞击靶体过程

    Figure  6.  Process of the projectile impacting the target recorded by high-speed photography

    图  7  靶体的迎弹面损伤

    Figure  7.  Target impact surface damage

    图  8  初次和二次打击下不同靶体的破坏形貌

    Figure  8.  Destruction morphology of different targets subjected to the first and second strike

    图  9  试验后回收的弹体

    Figure  9.  Recovered projectiles after the test

    图  10  骨料对弹坑直径和侵彻深度的影响

    Figure  10.  Influences of the coarse aggregate on crater diameter and depth of penetration

    图  11  侵彻深度与弹体的冲击速度[36-38]

    Figure  11.  Depth of penetration versus striking velocity of projectile[36-38]

    图  12  弹坑直径与弹体冲击速度[36-40]

    Figure  12.  Crater diameter versus striking velocity of projectile[36-40]

    图  13  骨料强度(硬度)对弹坑直径和侵彻深度的影响

    Figure  13.  Influences of the coarse aggregate strength (hardness) on crater diameter and depth of penetration

    图  14  UHTCC位于表面层对组合靶的抗侵彻性能的影响

    Figure  14.  Influence of UHTCC in the top layer on the penetration resistance of composite targets

    图  15  UHTCC位于中间层对组合靶的抗侵彻性能的影响

    Figure  15.  Influence of UHTCC in the middle layer on the penetration resistance of composite targets

    图  16  重复打击对弹坑面积和侵彻深度的影响

    Figure  16.  Influences of repeated impacts on craters areas and depth of penetration

    图  17  弹着点相对偏差距离与二次侵彻深度比之间的关系

    Figure  17.  Relationship between the relative deviation distance of the impact point and the second penetration depth ratio

    表  1  UHTCC和FRC各组分的质量浓度(kg/m3

    Table  1.   Mass concentrations of components (kg/m3) in UHTCC and FRC

    材料胶凝材料砂子减水剂玄武岩骨料刚玉骨料PVA
    UHTCC1 40528120039026
    FRC-BA1 40528121 056039014.3
    FRC-CA1 405281201 10339014.3
    下载: 导出CSV

    表  2  UHTCC和FRC的力学参数

    Table  2.   Mechanical parameters of UHTCC and FRC

    材料编号抗压强度/MPa抗拉强度/MPa
    UHTCC30.03.5
    FRC-BA41.23.1
    FRC-CA42.73.0
    下载: 导出CSV

    表  3  错位打击下不同靶体的侵彻试验结果

    Table  3.   Penetration test results of different targets subjected to dislocation impact

    试验编号m/gv/(m/s)r/mmH/mmDc/mmD/mmS1/cm2S/cm2Nwmax/mm
    T1-P2-1353.1542.317236743103 83.3 78.400.1
    T1-P2-2354.2581.444846101 80.1 77.200.1
    T2-P1-1353.2582.014728589178248.8250.791.1
    T2-P1-2353.0566.034458167219.0238.111 2.5
    T2-P2-1353.8574.415831151 90 63.6 56.240.7
    T2-P2-2353.2600.741930 72 40.7 38.972.0
    T3-P2-1352.8579.117429371169224.3257.281.2
    T3-P2-2352.4579.032967127126.7129.591.2
    T4-P2-1354.0580.019233546113100.2110.531.0
    T4-P2-2353.2581.032948139151.7160.731.0
    T5-P1-1352.3582.512231248108 91.6 99.720.1
    T5-P1-2352.4587.036139 89 62.2 47.830.1
    T5-P2-1351.0570.014423044106116 116.600.15
    T5-P2-2354.0581.029430 84 55.4 49.400.15
    下载: 导出CSV
  • [1] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
    [2] WU H, FANG Q, PENG Y, et al. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner [J]. International Journal of Impact Engineering, 2015, 76: 232–250. DOI: 10.1016/j.ijimpeng.2014.10.010.
    [3] 邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.

    DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.
    [4] ZOLLO R F. Fiber-reinforced concrete: an overview after 30 years of development [J]. Cement and Concrete Composites, 1997, 19(2): 107–122. DOI: 10.1016/S0958-9465(96)00046-7.
    [5] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites [J]. Materials and Structures, 1995, 28(10): 586–595. DOI: 10.1007/BF02473191.
    [6] LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492. DOI: 10.1089/apc.2006.20.829.
    [7] LI V C, HASHIDA T, Engineering ductile fracture in brittle-matrix composites [J]. Journal of Materials Science Letters, 1993, 12(12): 898−901. DOI: 10.1007/BF00455611.
    [8] NELSON P K, LI V C, KAMADA T. Fracture toughness of microfiber reinforced cement composites [J]. Journal of Materials in Civil Engineering, 2002, 14(5): 384–391. DOI: 10.1061/(ASCE)0899-1561(2002)14:5(384.
    [9] LI H D, XU S L, LEUNG C K Y. Tensile and flexural properties of ultra high toughness cemontious composite [J]. Journal of Wuhan University of Technology (Materials Science Edition), 2009, 24(4): 677–683. DOI: 10.1007/s11595-009-4677-5.
    [10] MAALEJ M, QUEK S T, ZHANG J, et al. Behavior of hybrid fiber ECC panels subjected to low and high velocity projectile impact: a review [M]// BRANDT A M, OLEK J, GLINICKI M A, et al. Brittle Matrix Composites 10. Cambridge: Woodhead Publishing, 2012: 335−344. DOI: 10.1533/9780857099891.335.
    [11] 刘问. 超高韧性水泥基复合材料冲击、断裂、疲劳及疲劳裂纹扩展性能的试验研究 [D]. 大连: 大连理工大学, 2011.
    [12] MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(ASCE)0899-1561(2005)17:2(143.
    [13] 赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究 [D]. 杭州: 浙江大学, 2018.

    ZHAO X. Experimental and theoretical study on the dynamic properties of ultra high toughness cementitious composites [D]. Hangzhou: Zhejiang University, 2018.
    [14] ZHANG J, MAALEJ M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact [J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855–863. DOI: 10.1061/(ASCE)0899-1561(2007)19:10(855.
    [15] BELL J, ZHANG Y X, SOE K, et al. High velocity impact behaviour of hybrid-fiber engineered cementitious composite panels [J]. Advanced Materials Research, 2012, 450/451: 563–567. DOI: 10.4028/www.scientific.net/AMR.450-451.563.
    [16] QUEK S T, LIN V W J, MAALEJ M. Development of functionally-graded cementitious panel against high-velocity small projectile impact [J]. International Journal of Impact Engineering, 2010, 37(8): 928–941. DOI: 10.1016/j.ijimpeng.2010.02.002.
    [17] LAI J Z, YANG H R, WANG H F, et al. Penetration experiments and simulation of three-layer functionally graded cementitious composite subjected to multiple projectile impacts [J]. Construction and Building Materials, 2019, 196: 499–511. DOI: 10.1016/j.conbuildmat.2018.11.154.
    [18] ANTOUN T H, LOMOV I N, GLENN L A. Simulation of the penetration of a sequence of bombs into granitic rock [J]. International Journal of Impact Engineering, 2003, 29(1): 81–94. DOI: 10.1016/j.ijimpeng.2003.09.006.
    [19] 邓国强, 杨秀敏. 钻地弹重复打击效应现场试验研究 [J]. 防护工程, 2012, 34(5): 1–5.

    DENG G Q, YANG X M. Experimental investigation into damage effects of repeated attacks of precision-guided penetration weapons [J]. Protective Engineering, 2012, 34(5): 1–5.
    [20] 邓国强, 杨秀敏. 工程岩体中多弹重复打击效应的数值模拟分析 [J]. 爆炸与冲击, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.

    DENG G Q, YANG X M. Numerical simulation of the effect of multiply EPW into engineering rock [J]. Explosion and Shock Waves, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.
    [21] 潘景龙, 张宝超, 马晓儒, 等. 武器间接命中条件下FRP约束混凝土抗多次打击能力 [J]. 复合材料报, 2004, 21(5): 128–133. DOI: 10.13801/j.cnki.fhclxb.2004.05.024.

    PAN J L, ZHANG B C, MA X R. Experimental study of resisting multi-hitting capacity on FRP confined concrete on condition of indirect damage by weapons [J]. Acta Materiae Compositae Sinica, 2004, 21(5): 128–133. DOI: 10.13801/j.cnki.fhclxb.2004.05.024.
    [22] 左魁, 曾宪明, 王启睿, 等. 钻地模型弹对岩石模拟材料二次侵彻试验 [J]. 解放军理工大学学报(自然科学版), 2007, 8(6): 626–629. DOI: 10.3969/j.issn.1009-3443.2007.06.012.

    ZUO K, ZENG X M. Second time penetration of earth-penetrating model projectile in rock medium [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(6): 626–629. DOI: 10.3969/j.issn.1009-3443.2007.06.012.
    [23] PRAKASH A, SRINIVASAN S M, RAO A R M, et al. The assessment of high velocity multi-impact damage in steel fiber reinforced cementitious composite panels [J]. WIT Transactions on the Built Environment, 2014, 141: 243–256. DOI: 10.2495/SUSI140211.
    [24] 蒋志刚, 万帆, 谭清华, 等. 钢管约束混凝土抗多发打击试验 [J]. 国防科技大学学报, 2016, 38(3): 117–123. DOI: 10.11887/j.cn.201603020.

    JIANG Z G, WAN F, TAN Q H, et al. Multi-hit experiments of steel-tube-confined concrete targets [J]. Journal of National University of Defense Technology, 2016, 38(3): 117–123. DOI: 10.11887/j.cn.201603020.
    [25] GOMEZ J T, SHUKLA A. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering, 2001, 25(10): 965–979. DOI: 10.1016/S0734-743X(01)00029-X.
    [26] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [27] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [28] 赖建中, 朱耀勇, 徐升, 等. 超高性能水泥基复合材料抗多次侵彻性能研究 [J]. 爆炸与冲击, 2013, 33(6): 601–607. DOI: 10.11883/1001-1455(2013)06-0601-07.

    LAI J Z, ZHU Y Y, XU S, et al. Resistance of ultra-high-performance cementitious composites to multiple impact penetration [J]. Explosion and Shock Waves, 2013, 33(6): 601–607. DOI: 10.11883/1001-1455(2013)06-0601-07.
    [29] 李金城. 射弹两次打击混凝土介质的累积侵彻效应研究 [D]. 南京: 南京理工大学, 2018.
    [30] 梁乔恒. UHMWPE纤维混凝土动态材料模型参数与抗多发打击研究 [D]. 长沙: 国防科学技术大学, 2016.
    [31] LAI J Z, GUO X J, Zhu Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [32] FENG J, GAO X D, LI J Z, et al. Penetration resistance of hybrid-fiber-reinforced high-strength concrete under projectile multi-impact [J]. Construction and Building Materials, 2019, 202: 341–352. DOI: 10.1016/j.conbuildmat.2019.01.038.
    [33] SOE K T, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fiber engineered cementitious composite panels [J]. Composite Structures, 2013, 104: 320–330. DOI: 10.1016/j.compstruct.2013.01.029.
    [34] 王会芳. 功能梯度水泥基复合材料制备及抗多次侵彻性能研究 [D]. 南京: 南京理工大学, 2017.
    [35] Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC) [R]. Japan Society of Civil Engineers, 2008.
    [36] LIU J, WU C Q, SU Y, et al. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts [J]. Engineering Structures, 2018, 173: 166–179. DOI: 10.1016/j.engstruct.2018.06.098.
    [37] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510−1 320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [38] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [39] LIU J, WU C Q, LI J, et al. Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration [J]. International Journal of Impact Engineering, 2017, 109: 131–149. DOI: 10.1016/j.ijimpeng.2017.06.006.
    [40] 张云升, 张文华, 刘建忠. 超高性能水泥基复合材料 [M]. 北京: 科学出版社, 2014.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  225
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 修回日期:  2021-07-08
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回