不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究

王晓东 余毅磊 蒋招绣 马铭辉 高光发

王晓东, 余毅磊, 蒋招绣, 马铭辉, 高光发. 不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究[J]. 爆炸与冲击, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181
引用本文: 王晓东, 余毅磊, 蒋招绣, 马铭辉, 高光发. 不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究[J]. 爆炸与冲击, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181
WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181
Citation: WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181

不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究

doi: 10.11883/bzycj-2021-0181
基金项目: 国家自然科学基金(11772160,11472008,11802001);江苏省研究生科研与实践创新计划(KYCX20_0319);爆炸科学与技术国家重点实验室开放课题(KFJJ18-01M)
详细信息
    作者简介:

    王晓东(1993- ),男,博士研究生,18752006367@163.com

    通讯作者:

    高光发(1980- ),男,博士,教授,gfgao@ustc.edu.cn

  • 中图分类号: O385;TJ012.4

Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities

  • 摘要: 为了研究12.7 mm穿燃弹以不同速度撞击陶瓷/铝合金复合靶板时弹芯的破碎及失效特性,开展了12.7 mm穿燃弹以434.5~844.6 m/s速度撞击SiC陶瓷/6061T6铝合金复合靶板的弹道试验,分析了弹靶的失效模式。弹芯在侵彻靶板后会产生不同尺寸的碎片,使用回收箱收集弹芯碎片并用不同孔径筛网对其进行筛分、称重,得到了不同撞击速度下弹芯碎片的质量分布,并对不同部位的弹芯碎片断口形貌进行了宏观和微观观测分析。研究结果表明:背板失效模式为碟形变形-剪切穿孔-花瓣形失效,试验后的弹芯碎片累积质量分布符合Rosin-Rammler幂率分布规律,且随着着靶速度的增大,小质量碎片质量增加;弹芯在冲击过程中等效直径较大碎片(大于8 mm)失效模式为拉伸脆性断裂,而等效直径小于2 mm的碎片上存在局部塑性剪切断裂。
  • 图  1  试验布置

    Figure  1.  Schematic of the arrangement for test

    图  2  12.7 mm穿燃弹弹头结构

    Figure  2.  Structure of a 12.7 mm API projectile

    图  3  弹芯材料准静态条件下的真实应力-应变曲线

    Figure  3.  Quasi-static true stress-strain curve of core material

    图  4  靶板结构

    Figure  4.  Target structure

    图  5  试验后靶板形貌

    Figure  5.  Back face images of tested targets

    图  6  不同试验中后效板的失效

    Figure  6.  The failure of aftereffect targets in different tests

    图  7  残余弹体出现的裂纹

    Figure  7.  A large fragment with a crack on the side

    图  8  弹芯碎片质量

    Figure  8.  Core fragment mass

    图  9  回收的弹体碎片

    Figure  9.  Recovered projectile core fragments

    图  10  残余弹体断裂面

    Figure  10.  Fracture surface of the residual projectile

    图  11  弹体碎片断口

    Figure  11.  Fracture surface of projectile fragment

    图  12  残余弹体纵向裂纹

    Figure  12.  The longitudinal cross-section of the residual projectile

    图  13  弹芯碎片中出现局部剪切韧窝

    Figure  13.  Local shear dimples appear in the core fragments

    图  14  不同着靶速度下碎片质量分布

    Figure  14.  Mass distribution of fragmentsunder different impact velocities

    图  15  不同速度时的幂指数与平均特征尺寸

    Figure  15.  The values of power index and average characteristic size under different impact velocities

  • [1] SAVIO S G, SENTHIL P, SINGH V, et al. An experimental study on the projectile defeat mechanism of hard steel projectile against boron carbide tiles [J]. International Journal of Impact Engineering, 2015, 86: 157–166. DOI: 10.1016/j.ijimpeng.2015.07.011.
    [2] DI BENEDETTO G, MATTEIS P, SCAVINO G. Impact behavior and ballistic efficiency of armor-piercing projectiles with tool steel cores [J]. International Journal of Impact Engineering, 2018, 115: 10–18. DOI: 10.1016/j.ijimpeng.2017.12.021.
    [3] RAHBEK D B, JOHNSEN B B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles [J]. International Journal of Impact Engineering, 2019, 133: 103332. DOI: 10.1016/j.ijimpeng.2019.103332.
    [4] ASAHI KAWASHIMA, H K H K. Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing [J]. Materials Transactions, 2005(7): 1725–1732.
    [5] GRADY D E, KIPP M E. Impact failure and fragmentation properties of metals [J]. International Journal of Impact Engineering, 1997, 20(1): 293–308. DOI: 10.1016/S0734-743X(97)87502-1.
    [6] PIEKUTOWSKI A J. Effects of scale on debris cloud properties [J]. International Journal of Impact Engineering, 1997, 20(6): 639–650.
    [7] GRADY D E. Dissipation in adiabatic shear bands [J]. Mechanics of Materials, 1994, 17(2): 289–293.
    [8] MA G, ZHANG Y, ZHOU W, et al. The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid [J]. International Journal of Impact Engineering, 2018, 113: 132–143. DOI: 10.1016/j.ijimpeng.2017.11.016.
    [9] WANG C T, HE Y, JI C, et al. Dynamic fragmentation of a Zr-based metallic glass under various impact velocities [J]. Journal of Materials Science, 2021, 56(4): 2900–2911. DOI: 10.1007/s10853-020-05495-5.
    [10] SHAN J, XU S, LIU Y, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
    [11] SARVA S, NEMAT-NASSER S, MCGEE J, et al. The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles [J]. International Journal of Impact Engineering, 2007, 34(2): 277–302. DOI: 10.1016/j.ijimpeng.2005.07.006.
    [12] CHI R, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84: 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011.
    [13] LYNCH N J, BLESS S J, CULLIS I G, et al. The influence of confinement on the penetration of ceramic targets by KE projectiles at 1.8 and 2.6 km/s [J]. International Journal of Impact Engineering, 2006, 33(1): 390–401. DOI: 10.1016/j.ijimpeng.2006.09.029.
    [14] LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 259–275. DOI: 10.1016/S0734-743X(99)00152-9.
    [15] SAVIO S G, RAMANJANEYULU K, MADHU V, et al. An experimental study on ballistic performance of boron carbide tiles [J]. International Journal of Impact Engineering, 2011, 38(7): 535–541. DOI: 10.1016/j.ijimpeng.2011.01.006.
    [16] GRADY D E. Fragmentation of rings and shells[M]. Berlin: Springer, 2006: 2−9.
    [17] GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. DOI: 10.1016/j.ijimpeng.2008.07.042.
    [18] 张青艳. 脆性材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2019: 26−46.

    ZHANG Q Y. Fragmentations of brittle materials under quasi-static and dynamic compression[D]. Ningbo: Ningbo University, 2019: 26−46.
  • 加载中
图(15)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  268
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-09-30
  • 网络出版日期:  2022-01-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回