聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析

张勇

张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析[J]. 爆炸与冲击, 2022, 42(4): 045101. doi: 10.11883/bzycj-2021-0182
引用本文: 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析[J]. 爆炸与冲击, 2022, 42(4): 045101. doi: 10.11883/bzycj-2021-0182
ZHANG Yong. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure[J]. Explosion And Shock Waves, 2022, 42(4): 045101. doi: 10.11883/bzycj-2021-0182
Citation: ZHANG Yong. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure[J]. Explosion And Shock Waves, 2022, 42(4): 045101. doi: 10.11883/bzycj-2021-0182

聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析

doi: 10.11883/bzycj-2021-0182
基金项目: 国家自然科学基金(51478462, 51508565)
详细信息
    作者简介:

    张 勇(1980- ),男,博士,讲师,freebirdzy1980@163.com

  • 中图分类号: O383;TU599

Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure

  • 摘要: 通过对聚氨酯泡沫铝和混凝土组成的复合结构进行接触爆炸试验,探讨了聚氨酯泡沫铝的吸能性能,并进行数值模拟分析。结果显示:聚氨酯泡沫铝的吸能性能明显优于泡沫铝,吸能层厚度对吸能效果影响很大,多层结构的聚氨酯泡沫铝吸能性能对比厚度一致的单层吸能层结构没有明显的改善;在保证了比较合理的吸能层厚度后,防护结构的每一层材料层存在着一个最佳的厚度组合来保证复合层优良的抗爆性能。
  • 图  1  聚氨酯泡沫铝板(左)和泡沫铝板(右)对比(尺寸:1 m×1 m)

    Figure  1.  Polyurethane foam aluminum (left) and aluminum plates (right) (size: 1 m×1 m)

    图  2  试验组的安放

    Figure  2.  Test site layout

    图  3  数据采集系统

    Figure  3.  Data acquisition system

    图  4  现场5组试验布置

    Figure  4.  Five groups experimental setups

    图  5  聚氨酯泡沫铝夹层(左)和泡沫铝夹层(右)受破坏情况对比

    Figure  5.  Differences in the damage between the polyurethane foam aluminum sandwich (left) and aluminum foam sandwich (right)

    图  6  两种工况受破坏情况

    Figure  6.  Damage in two cases

    图  7  底部测点压力-时间曲线

    Figure  7.  Pressure force-time curves at the bottom point

    图  8  底部测点位移曲线图

    Figure  8.  Displacement curves at the bottom point in three different cases

    图  9  建立试验模型

    Figure  9.  Test model establishment

    图  10  模型3的爆炸应力波传播图

    Figure  10.  Blast stress wave spread of model 3

    图  11  底部混凝土测点压力的试验和模拟结果验证

    Figure  11.  Stress test and simulation contrast of the concrete points at the bottom

    图  12  不同工况 0.9 ms时的破坏对比

    Figure  12.  Destruction contrast in different cases at 0.9 ms

    图  13  工况4、6、7底部混凝土节点应力对比

    Figure  13.  Stress contrast of case 4, 6 & 7 nodes of the concrete at the bottom

    图  14  工况4、8底部混凝土节点速度对比

    Figure  14.  Velocity contrast of model 4 & 8 node of the concrete at the bottom

    表  1  泡沫铝板材的性能参数表

    Table  1.   Performance of aluminum foam plank parameter

    孔径孔隙率通孔率体积质量抗压强度抗弯强度抗拉强度
    1.66 mm68~78%90~95%0.60~0.85 g/cm38.61 MPa8.06 MPa3.41 MPa
    下载: 导出CSV

    表  2  混凝土的配合比(kg/m3

    Table  2.   Mixture ratio of concrete (kg/m3)

    水泥硅粉粉煤灰石子减水剂
    150370508059511559
    下载: 导出CSV

    表  3  试验组设计

    Table  3.   Design of the test

    工况组合方式
    1覆土层(100 mm)/混凝土层(220 mm)
    2覆土层(100 mm)/混凝土层(100 mm)/泡沫铝层(20 mm)/混凝土层(100 mm)
    3覆土层(100 mm)/混凝土层(100 mm)/聚氨酯泡沫铝层(20 mm)/混凝土层(100 mm)
    4覆土层(100 mm)/混凝土层(100 mm)/聚氨酯泡沫铝层(40 mm)/混凝土层(100 mm)
    5覆土层(100 mm)/混凝土层(66 mm)/聚氨酯泡沫铝层(20 mm)/混凝土层(66 mm)/
    聚氨酯泡沫铝层(20 mm)/混凝土层(66 mm)
    下载: 导出CSV

    表  4  改变材料层厚度的试验模型

    Table  4.   Change material thickness of the test model

    工况组合方式
    6覆土层(100 mm)/混凝土层(120 mm)/聚氨酯泡沫铝层(20 mm)/混凝土层(100 mm)
    7覆土层(100 mm)/混凝土层(110 mm)/聚氨酯泡沫铝层(30 mm)/混凝土层(100 mm)
    8覆土层(100 mm)/混凝土层(100 mm)/聚氨酯泡沫铝层(30 mm)/混凝土层(110 mm)
    下载: 导出CSV
  • [1] SHEN J H, LU G X, WANG Z H, et al. Experiments on curved sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2010, 37(9): 960–970. DOI: 10.1016/j.ijimpeng.2010.03.002.
    [2] MERRETT R P, LANGDON G S, THEOBALD M D. The blast and impact loading of aluminium foam [J]. Materials & Design, 2012, 44: 311–319. DOI: 10.1016/j.matdes.2012.08.016.
    [3] YUN N R, SHIN D H, JI S W, et al. Experiments on blast protective systems using aluminum foam panels [J]. KSCE Journal of Civil Engineering, 2014, 18(7): 2153–2161. DOI: 10.1007/s12205-014-0092-3.
    [4] 曾贵玉, 聂福德, 刘兰, 等. 聚氨酯原位结晶包覆HMX的研究 [J]. 含能材料, 2011, 19(2): 138–141. DOI: 10.3969/j.issn.1006-9941.2011.02.004.

    ZENG G Y, NIE F D, LIU L, et al. In-situ crystallization coating HMX by polyurethane [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 138–141. DOI: 10.3969/j.issn.1006-9941.2011.02.004.
    [5] 朱长春, 翁汉元, 吕国会, 等. 国内外聚氨酯工业最新发展状况 [J]. 化学推进剂与高分子材料, 2012, 10(5): 1–20. DOI: 10.16572/j.issn1672-2191.2012.05.001.

    ZHU C C, WENG H Y, LYU G H, et al. The latest development status of polyurethane industry at home and abroad [J]. Chemical Propellants & Polymeric Materials, 2012, 10(5): 1–20. DOI: 10.16572/j.issn1672-2191.2012.05.001.
    [6] 王冬梅, 夏绍灵, 张琳琪, 等. 聚氨酯/纳米复合材料的制备方法的研究进展 [J]. 高分子通报, 2011(3): 65–72. DOI: 10.14028/j.cnki.1003-3726.2011.03.015.

    WANG D M, XIA S L, ZHANG L Q, et al. Research progress in the Preparation methods of polyurethane/Nano-composite materials [J]. Polymer Bulletin, 2011(3): 65–72. DOI: 10.14028/j.cnki.1003-3726.2011.03.015.
    [7] USTA F, TÜRKMEN H S, SCARPA F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures [J]. Thin-Walled Structures, 2021, 163: 107738. DOI: 10.1016/J.TWS.2021.107738.
    [8] YÜKSEL E, GÜLLÜ A, ÖZKAYNAK H, et al. Experimental investigation and pseudoelastic truss model for in-plane behavior of corrugated sandwich panels with polyurethane foam core [J]. Structures, 2021, 29: 823–842. DOI: 10.1016/J.ISTRUC.2020.11.058.
    [9] 隋顺彬, 康建功, 孙建虎. 泡沫铝在油气爆炸荷载作用下的吸能减冲击性能 [J]. 爆破, 2011, 28(2): 30–34. DOI: 10.3963/j.issn.1001-487X.2011.02.009.

    SUI S B, KANG J G, SUN J H. Energy absorption and vibration reduction performance of aluminum foam under fuel-air explosion loading [J]. Blasting, 2011, 28(2): 30–34. DOI: 10.3963/j.issn.1001-487X.2011.02.009.
    [10] 张伟, 齐明思, 赵志芳, 等. 泡沫铝-聚氨酯复合材料制备及力学性能分析 [J]. 包装工程, 2017, 38(21): 35–40. DOI: 10.19554/j.cnki.1001-3563.2017.21.008.

    ZHANG W, QI M S, ZHAO Z F, et al. Preparation and mechanical property analysis of aluminum foam-polyurethane composites [J]. Packaging Engineering, 2017, 38(21): 35–40. DOI: 10.19554/j.cnki.1001-3563.2017.21.008.
    [11] 谢卫红, 杜红涛, 李顺才. 泡沫铝与聚氨酯泡沫铝吸能特性对比 [J]. 沈阳建筑大学学报(自然科学版), 2011, 27(2): 307–311.

    XIE W H, DU H T, LI S C. Comparative study of energy absorption performance for open-cell aluminum and polyurethane foam aluminum [J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(2): 307–311.
    [12] 谢卫红, 杜红涛, 李顺才. 聚氨酯泡沫铝复合材料动态力学实验 [J]. 复合材料学报, 2011, 28(3): 103–108. DOI: 10.13801/j.cnki.fhclxb.2011.03.030.

    XIE W H, DU H T, LI S C. Experimental study on dynamic mechanical performance of polyurethanealuminum foams composites [J]. Acta Materiae Compositae Sinica, 2011, 28(3): 103–108. DOI: 10.13801/j.cnki.fhclxb.2011.03.030.
    [13] 张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究 [J]. 爆炸与冲击, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.

    ZHANG Y, CHEN L, CHEN R J, et al. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum [J]. Explosion and Shock waves, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.
    [14] YU R, LUO W, YUAN H, et al. Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson's ratio [J]. Thin-Walled Structures, 2020, 153: 106679. DOI: 10.1016/J.TWS.2020.106679.
    [15] 张勇. 地面防护工程抗爆复合材料与结构研究 [D]. 江苏, 徐州: 中国矿业大学, 2014: 26, 99, 103.

    ZHANG Y. Research on the antiknock composite material and structure of ground defense engineering [D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2014: 26; 99; 103.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  235
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-06-02
  • 网络出版日期:  2022-03-09
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回