弧形双钢板混凝土组合板抗爆性能数值研究

赵春风 何凯城 卢欣 潘蓉 王静峰 李晓杰

赵春风, 何凯城, 卢欣, 潘蓉, 王静峰, 李晓杰. 弧形双钢板混凝土组合板抗爆性能数值研究[J]. 爆炸与冲击, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205
引用本文: 赵春风, 何凯城, 卢欣, 潘蓉, 王静峰, 李晓杰. 弧形双钢板混凝土组合板抗爆性能数值研究[J]. 爆炸与冲击, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205
ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Numerical study of blast resistance of curved steel-concrete-steel composite slabs[J]. Explosion And Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205
Citation: ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Numerical study of blast resistance of curved steel-concrete-steel composite slabs[J]. Explosion And Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205

弧形双钢板混凝土组合板抗爆性能数值研究

doi: 10.11883/bzycj-2021-0205
基金项目: 安徽省自然科学基金能源互联网联合基金(2008085UD12);合肥市自然科学基金(2021028);大连理工大学工业装备与分析国家重点实验室基金(GZ21112,GZ19106)
详细信息
    作者简介:

    赵春风(1983- ),男,博士,副教授,zhaowindy@hfut.edu.cn

  • 中图分类号: O383

Numerical study of blast resistance of curved steel-concrete-steel composite slabs

  • 摘要: 依据规范设计了3种不同连接件的弧形双钢板混凝土组合板,基于ANSYS/LS-DYNA非线性有限元程序研究了弧形双钢板混凝土组合板在近场爆炸作用下的损伤模式、跨中位移变化以及能量消耗状况等,对比研究了3种不同板的耗能状况及损伤机理。以背爆面钢板跨中位移为指标,分析了用药量、混凝土强度和钢板厚度等参数对弧形双钢板混凝土板抗爆性能的影响规律。结果表明:在近场爆炸作用下,弧形板均保持良好的整体性,没有出现混凝土飞散现象,仍具有持续承载能力,比传统平面双钢板混凝土组合板具有更加优异的抗爆性能;重叠栓钉的连接性能强于栓钉,稍弱于对拉螺栓;提高混凝土强度不能改善混凝土的损伤状况,但能减小跨中位移;增加钢板厚度能显著减小钢板跨中位移,提高弧形双钢板混凝土组合板的抗爆能力。
  • 图  1  对拉螺栓弧形双钢板混凝土组合板(CSCS-BO)结构形式和几何尺寸(单位:mm)

    Figure  1.  Structure and dimensions of CSCS-BO (unit: mm)

    图  2  重叠栓钉弧形双钢板混凝土组合板(CSCS-OS)结构形式 (单位:mm)

    Figure  2.  Structure of CSCS-OS (unit: mm)

    图  3  栓钉弧形双钢板混凝土组合板(CSCS-ST)结构形式 (单位:mm)

    Figure  3.  Structure of CSCS-ST (unit: mm)

    图  4  四分之一数值分析模型

    Figure  4.  Quarter numerical model

    图  5  LBE算法示意图

    Figure  5.  Diagram of LBE algorithm

    图  6  试件形式与尺寸

    Figure  6.  Configuration and size of the specimen

    图  7  有限元结果验证对比

    Figure  7.  Verification and comparison of the FE results

    图  8  混凝土的有效塑性应变云图

    Figure  8.  Effective plastic strains of the concrete(CSCS-BO)

    图  9  钢板的压力云图

    Figure  9.  Pressures of the steel plates (CSCS-BO)

    图  10  钢板中心位移时程曲线

    Figure  10.  Midpoint displacement time history curves (CSCS-BO)

    图  11  CSCD-BO板能量时程曲线

    Figure  11.  Energy time history curves (CSCS-BO)

    图  12  混凝土的有效塑性应变云图

    Figure  12.  Effective plastic strains of the concrete (CSCS-OS)

    图  13  钢板的压力云图

    Figure  13.  Pressure of the steel plates (CSCS-OS)

    图  14  钢板中心位移时程曲线

    Figure  14.  Midpoint displacement time history curves (CSCS-OS)

    图  15  CSCD-OS板能量时程曲线

    Figure  15.  Energy time history curves (CSCS-OS)

    图  16  混凝土的有效塑性应变云图

    Figure  16.  Effective plastic strains of the concrete (CSCS-ST)

    图  17  钢板压力云图

    Figure  17.  Pressures of the steel plates (CSCS-ST)

    图  18  钢板中心位移时程曲线

    Figure  18.  Midpoint displacement time history curves (CSCS-ST)

    图  19  CSCS-ST板能量时程曲线

    Figure  19.  Energy time history curves (CSCS-ST)

    图  20  混凝土损伤情况

    Figure  20.  Damages of concrete

    图  21  背爆面钢板中心位移曲线

    Figure  21.  Mid-point displacement curves of the back steel plates

    图  22  不同药量下混凝土的有效塑性应变

    Figure  22.  Effective plastic strain of the concrete underdifferent explosive quantities

    图  23  不同药量下跨中位移时程曲线

    Figure  23.  Midpoint displacement time history curvesunder different explosive quantities

    图  24  不同药量下跨中最大位移及残余位移

    Figure  24.  Maximum and residual midpoint displacement sunder different explosive quantities

    图  25  不同强度混凝土的有效塑性应变

    Figure  25.  Effective plastic strain of concretes with different concrete strengths

    图  26  不同强度混凝土跨中位移时程曲线

    Figure  26.  Midpoint displacement time history curves for different concrete strengths

    图  27  不同强度混凝土跨中最大位移及残余位移

    Figure  27.  Maximum and residual midpoint displacements for different concrete strengths

    图  28  不同钢板厚度下混凝土有效塑性应变

    Figure  28.  Effective plastic strain of concretes with different thicknesses of the steel plates

    图  29  不同钢板厚度跨中位移时程曲线

    Figure  29.  Midpoint displacement time history curves for different thicknesses of the steel plates

    图  30  不同钢板厚度最大位移及残余位移

    Figure  30.  Maximum and residual midpoint displacements for different thicknesses of the steel plates

    表  1  连接件参数

    Table  1.   Material parameters of the connectors

    ρ/(g·cm−3)E/GPa泊松比屈服强度/MPa有效塑性应变
    7.802000.34000.12
    下载: 导出CSV

    表  2  钢板参数

    Table  2.   Material parameters of the steel plates

    ρ/(g·cm−3)E/GPaμA/MPaB/MPanmC
    7.832000.282352750.941.030.036
    下载: 导出CSV

    表  3  钢板中心迎爆面和背爆面的位移对比

    Table  3.   Comparison of the midpoint displacement of the steel plates

    组合板类型迎爆面钢板最大位移/cm背爆面钢板最大位移/cm迎爆面钢板残余位移/cm背爆面钢板残余位移/cm背、迎爆面残余位移差/cm
    CSCS-BO3.425.411.703.892.19
    CSCS-OS2.835.911.224.453.23
    CSCS-ST3.396.350.964.683.72
    SCS-BO8.7312.443.71
    下载: 导出CSV
  • [1] 赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.

    ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
    [2] 赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.

    ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
    [3] YAN J B, LIU X M, LIEW J Y R, et al. Steel-concrete-steel sandwich system in Arctic offshore structure: materials, experiments, and design [J]. Materials & Design, 2016, 91: 111–121. DOI: 10.1016/j.matdes.2015.11.084.
    [4] YAN C, WANG Y H, ZHAI X M, et al. Experimental study on curved steel-concrete-steel sandwich shells under concentrated load by a hemi-spherical head [J]. Thin-Walled Structures, 2019, 137: 117–128. DOI: 10.1016/j.tws.2019.01.007.
    [5] 彭先泽, 杨军, 李顺波, 等. 爆炸冲击载荷作用下双层钢板混凝土板与钢筋混凝土板动态响应对比研究 [J]. 防灾科技学院学报, 2012, 14(3): 18–23. DOI: 10.3969/j.issn.1673-8047.2012.03.004.

    PENG X Z, YANG J, LI S B, et al. Comparative study on dynamic response of bi-steel slab and reinforced concrete slab under blast loading [J]. Journal of Institute of Disaster Prevention, 2012, 14(3): 18–23. DOI: 10.3969/j.issn.1673-8047.2012.03.004.
    [6] 卢欣. 钢-混凝土组合墙板抗接触爆炸性能实验及数值研究 [D]. 合肥: 合肥工业大学, 2020. DOI: 10.27101/d.cnki.ghfgu.2020.001546.
    [7] HUANG Z Y, LIEW J Y R. Experimental and analytical studies of curved steel-concrete-steel sandwich panels under patch loads [J]. Materials & Design, 2016, 93: 104–117. DOI: 10.1016/j.matdes.2015.12.144.
    [8] YAN C, WANG Y H, ZHAI X M. Low velocity impact performance of curved steel-concrete-steel sandwich shells with bolt connectors [J]. Thin-Walled Structures, 2020, 150: 106672. DOI: 10.1016/j.tws.2020.106672.
    [9] YAN J B, XIONG M X, QIAN X D, et al. Numerical and parametric study of curved steel-concrete-steel sandwich composite beams under concentrated loading [J]. Materials and Structures, 2016, 49(10): 3981–4001. DOI: 10.1617/s11527-015-0768-2.
    [10] MENG L Z, WANG Y H, ZHAI X M. Modeling anddynamic response ofcurved steel-concrete-steel sandwich shells under blast loading [J]. International Journal of Steel Structures, 2020, 20(5): 1663–1681. DOI: 10.1007/s13296-020-00403-8.
    [11] HUANG Z Y, LIEW J Y R. Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultra-lightweight cement composite [J]. Construction and Building Materials, 2015, 95: 922–938. DOI: 10.1016/j.conbuildmat.2015.07.134.
    [12] 中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015 [S]. 北京: 中国建筑工业出版社, 2016.
    [13] 周云波, 郭启涛, 佘磊, 等. 基于LBE方法的驾驶室防护模拟 [J]. 北京理工大学学报, 2016, 36(3): 237–241. DOI: 10.15918/j.tbit1001-0645.2016.03.004.

    ZHOU Y B, GUO Q T, SHE L, et al. Simulation of vehicle cabin protection based on load blast enhanced method [J]. Transactions of Beijing Institute of Technology, 2016, 36(3): 237–241. DOI: 10.15918/j.tbit1001-0645.2016.03.004.
    [14] HAN Y Z, LIU H B. Finite element simulation of medium-range blast loading using LS-DYNA [J]. Shock and Vibration, 2015(2): 1–9. DOI: 10.1155/2015/631493.
    [15] BAKER W E. Explosions in air[M]. Texas, USA: University of Texas press, 1973.
    [16] HALLQUIST J O. LS-DYNA keyword user’s manuaL [Z]. California, USA: Livermore Software Technology Corporation, 2007.
    [17] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
    [18] WANG Y H, LIEW J Y R, LEE S C. Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2015, 76: 221–231. DOI: 10.1016/j.ijimpeng.2014.10.005.
  • 加载中
图(30) / 表(3)
计量
  • 文章访问数:  472
  • HTML全文浏览量:  322
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 录用日期:  2021-11-17
  • 修回日期:  2021-08-02
  • 网络出版日期:  2021-11-29
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回