A method of geometry optimization for dynamic tensile specimen based on artificial neural network and genetic algorithm
-
摘要: 材料动态拉伸力学性能测试中,动态拉伸试样的几何尺寸对测试结果的准确性与有效性有着较大影响。为对动态拉伸试样的结构进行优化设计,以使其在动态拉伸过程中更好地满足一维应力与变形均匀等基本假设。首先,建立了量化的试样测量准确度指标,即应力平衡达到时间、变形均匀度、非轴向应力相对水平、过渡段相对变形。然后,对试样结构参数进行正交试验设计,通过数值模拟的方法得到了关于试样尺寸与测量准确度指标的正交试验数据库,并对正交试验数据库进行多目标正交试验矩阵分析,得到了试样结构参数对各测量准确度指标影响的主次顺序和规律。最后,以正交试验数据库为训练集,采用人工神经网络(artificial neural network, ANN)协同遗传算法(genetic algorithm, GA)的全局寻优方法对试样的结构尺寸进行优化设计,得到了试样的最优结构尺寸,并对最优尺寸的有效性进行了验证。结果表明,优化后的试样结构在材料动态拉伸力学性能测试精度上的表现明显得以提升。因此,采用ANN-GA协同优化的方法对动态拉伸试样的结构进行优化具有可行性和有效性。Abstract: The split Hopkinson tensile bar is one of the most commonly used apparatuses to test the dynamic tensile mechanical properties of materials at the high strain rates from 102 s−1 to 103 s−1, in which the specimens with a dog-bone shape are usually used. The dimensions of the specimen used are critical to ensure the basic assumptions during dynamic tensile process, such as one-dimensional stress state and uniform deformation of the specimen etc. And whether these assumptions can be satisfied would affect the measurement accuracy of the dynamic tensile properties directly. So, it is urgent to study the influence of the specimen structural parameters on the stress and deformation states of the specimen during the dynamic tensile tests. At the same time, developing and establishing an effective method which can realize the global optimization of specimen structural parameters in the entire parameter space is crucial. In order to actualize the above research objectives, indicators which can quantify the measurement accuracy of the dynamic tensile tests were firstly proposed, namely the time required to reach the stress equilibrium, the deformation uniformity, the relative level of the non-axial stress, and the relative deformation of the transition zones. Orthogonal tests with 6 factors and 5 levels were then designed for the important structural parameters of the dog-bone shaped sheet tensile specimens. According to the rules of the orthogonal test design, 25 dynamic tensile specimens with different structural dimensions were obtained. The commercial finite element software ABAQUS/Explicit was used to establish a finite element model of the split Hopkinson tensile bar, and dynamic tensile test simulations were performed on the dynamic tensile specimens obtained from the orthogonal test design. An orthogonal test dataset with the specimen structural parameters as the input and the measurement accuracy indicators as the output was then constructed. Multi-objective orthogonal test matrix analysis was carried out on the orthogonal test dataset to obtain the influence order as well as the influence law of the structural parameters of the tensile specimens on the measurement accuracy indicators of tests. Taking the orthogonal test dataset as the training dataset, an artificial neural network (ANN) model was used to fit the nonlinear relationship which can predict the measurement accuracy indicators of the test by using the structural parameters of the specimen, and then the fitness function in the genetic algorithm (GA) was established by using this model. Finally, the structural parameters of the dynamic tensile specimen were optimized using the ANN-GA collaborative optimization method, and the optimal structural dimensions of the dynamic tensile specimen were obtained as the result of the optimization. Finite element simulation results show that the optimal structural dimensions obtained by the ANN-GA optimization method are valid. The results of this study demonstrate the practicability and effectiveness of the ANN-GA method in the structural optimization of dynamic tensile specimens. On the other hand, it can provide guidance for the specimen design in the dynamic tensile mechanical properties tests of materials, and can also provide a reference for the validity analysis of the experimentally measured mechanical properties.
-
Key words:
- split Hopkinson bar /
- geometry effect /
- specimen design /
- machine learning /
- genetic algorithm
-
高压下材料屈服强度特性是当前爆炸力学、冲击动力学、高压物理和材料科学等学科领域重点关注的基础问题,研究成果在装甲防护、航空航天器防护等方面有重要的应用价值。自20世纪60年代以来,先后发展了静水压线比较法[1]、压剪方法[2]、横向应力计方法[3]和自洽方法[4](也称为双屈服面方法或AC方法)等高压强度研究方法。静水压线比较法受状态方程精度影响,在高压下精度并不高。压剪方法和横向应力计方法分别受到加载技术和测试技术的限制,往往局限于20 GPa以内。自洽方法原则上没有压力限制,但需要进行一组冲击加载-卸载实验和冲击加载-再加载实验才能获取一个强度数据。其中冲击加载-再加载实验相对复杂,需要采用由高、低阻抗材料构成的组合飞片进行冲击才能实现。由于组合飞片在气炮驱动的过程中容易发生分离,导致在待测材料中形成冲击加载-卸载-再冲击加载,而非预期的冲击加载-再加载,也就无法获得强度数据。在现有的高压强度研究方法中,自洽方法是目前应用最广泛的一种方法,提供了包括金属材料(如铝及合金[4-10]、铜[6]、钒[11]、钨[12-14]、钽[15]、铍[16]、钢[17-18]等)、陶瓷材料(B4C[19]、SiC[20])、金属玻璃(Zr51Ti5Ni10Cu25Al9)[21]和复合材料[22]等大量材料的高压强度数据。但正如前面所指出的,由于冲击加载-再加载实验难度大,目前自洽方法提供的高压强度数据大部分仅来自冲击加载-卸载实验,这类强度数据实际上并不完备。
针对上述自洽方法的问题,胡建波等[9-10]通过采用平面焊接技术加强组合飞片之间的结合力来避免其分离。为了简化波系作用,利于数据处理分析,组合飞片的第一层通常为待测样品材料。胡建波等[9-10]利用由此制作的TC4/LY12铝组合飞片成功地加速到3.2 km/s,并对LY12铝样品进行了对称碰撞,获得了34 GPa压力下(指第一次冲击压力,下同)LY12铝的冲击加载-再加载粒子速度剖面。在此之前,铝的冲击加载-再加载实验的最高压力仅为22 GPa[5]。类似地,M.D.Furnish等[18]则采用爆炸焊接技术制作了Ta/2169钢组合飞片。该飞片被成功地加速到2.0 km/s,并由此获得了48 GPa压力下2169钢的冲击加载-再加载粒子速度剖面。上述焊接技术的应用极大提升了冲击加载-再加载实验能力,拓展了自洽方法的实验压力范围。然而,上述焊接技术比较复杂,更重要的是焊接处理时会经历高温、高压作用过程,可能改变组合飞片中的待测样品材料初始状态,从而对高压强度结果造成影响。值得注意的是,大量的轻气炮实验数据表明:在轻气炮驱动飞片加速过程中,飞片会发生如弓形或马鞍形等复杂的弯曲变形,而且不同材料飞片的变形量及形状也不同[23-24]。事实上,上述因素极易造成组合飞片在气炮驱动的过程中发生分离。
基于上述分析,本文中提出一种实现冲击加载-再加载实验的简便方法—采用较高硬度材料为支撑,通过环氧树脂与待测样品粘接制成组合飞片,由此减小气炮加载下飞片的弯曲变形来避免分离,并通过铝、锡和锆基金属玻璃的冲击实验验证该方法的有效性。在此基础上,获得铝、锡和锆基金属玻璃再加载过程剪应力的变化情况,并初步分析其对强度结果的影响。
1. 实验方法
实验采用如图 1所示的反向碰撞方式,即由组合飞片直接撞击透明的单晶LiF窗口。组合飞片的第一层为待测材料(即样品),其后为用于支撑样品的具有较高硬度的材料,两层飞片之间采用环氧树脂进行粘接,环氧树脂厚度约10 μm。上述组合飞片的制作过程均在常温、常压下进行,不会改变组合飞片中的待测样品材料初始状态。LiF窗口尺寸为Ø28 mm×12 mm,碰撞面镀有1 μm厚的铝膜作为光学测试的反射面,同时为保护长历时测量过程中铝膜不受破坏,铝膜前粘接了8 μm铜箔。一种激光干涉测速技术—DISAR(displacement interferometer system for any reflector)技术[25]用于测量样品/LiF窗口界面粒子速度剖面,通过剖面可以直观判断样品中是否经历预期的冲击加载-再加载过程。组合飞片冲击LiF窗口的速度由磁测速技术进行测量。根据实测的飞片速度以及样品和窗口材料的Hugoniot参数,采用阻抗匹配法可以计算得到样品的冲击压力和冲击波速度,结合图 1所示的波系作用可以进一步计算得到再加载弹塑性波的声速cL。
组合飞片中支撑材料除具有较高硬度外,其阻抗应高于样品材料的阻抗,以实现对样品的冲击加载-再加载。当然,为确保再加载过程出现弹塑性特征信息,再加载压力幅度不能过高,以避免形成冲击波。根据上述条件,针对LY12铝样品采用了TC4钛合(成分为Ti90-Al6-V4)作为支撑材料,锡和锆基金属玻璃(Zr51Ti5Ni10Cu25Al9,详细参数参见文献[26])则采用45钢作为支撑材料。
2. 实验结果与初步分析
利用图 1所示的实验装置,在Ø30 mm二级轻气炮上进行了5发铝、锡和锆基金属玻璃为样品的冲击加载-再加载实验,冲击速度范围为2.49~4.39 km/s,在样品中产生的压力范围为28~48 GPa,样品和支撑材料的直径均为28 mm, 详细实验参数见表 1, 表中Hs为样品厚度,hs为支撑材料厚度,D为冲击波速度,p为冲击压力,τH和τc分别为Hugoniot状态剪应力和临界剪应力。为了尽量减小气炮加载下组合飞片的弯曲变形,支撑材料总厚度不小于3 mm。尤其是在最高冲击速度为4.39 km/s的实验中(实验2),除2 mm厚的TC4外另增加了3 mm厚的钽作为支撑材料。
表 1 平板冲击实验条件及结果Table 1. Experimental conditions and results for planar plate-impact experiments实验编号 样品材料 Hs/mm 支撑材料 hs/mm Ds/(km·s-1) p/GPa (τc-τH)/GPa 1 LY12铝 1.445 TC4 3.01 3.67 38.3 0.73 2 LY12铝 1.465 Ta/TC4 3.05/2.09 4.39 48.5 0.77 3 锡 2.013 45钢 4.50 2.49 28.7 0.07 4 锡 2.015 45钢 4.50 3.08 38.1 0.16 5 锆基金属玻璃 3.135 45钢 4.50 3.00 39.1 0.53 由DISAR测得的铝、锡和锆基金属玻璃为样品的冲击加载-再加载粒子速度剖面如图 2~4所示。从图中可以看到,5发实验均获得了预期的冲击加载-再加载波剖面,这表明采用较高硬度材料为支撑以减小组合飞片弯曲变形来避免分离的方法是简便、有效的。此外,铝、锡和锆基金属玻璃为样品的再加载波剖面均出现一定程度的弹塑性波剖面特征,表明相对应支撑材料的阻抗选取是合适的。图中uw, H和uw, 1分别为再加载弹性波和塑性波起始对应的粒子速度。
根据图 1所示的波传播特性,由图 2~4的粒子速度剖面可以计算得到沿着再加载过程的拉格朗日纵波声速:
cL=HsΔt−Hs/Ds (1) 式中:Ds为碰撞时样品中产生的冲击波的速度(由实测的飞片速度以及样品和窗口材料的Hugoniot参数,通过阻抗匹配法计算得到冲击波速度),Δt为如图 1所示的来自样品/支撑材料界面的再加载波到达样品/窗口界面时间与碰撞时间之差。
图 5给出了LY12铝再加载过程拉格朗日纵波声速随粒子速度u变化的典型结果(实验1)。其中,粒子速度u由样品/窗口界面粒子速度uw结合增量型阻抗匹配法[12, 27]计算得到,由此得到的粒子速度计及了加载波在样品/窗口界面反射造成的影响。uH和u1分别为Hugoniot状态对应的粒子速度和再加载进入塑性屈服时对应的粒子速度,由图 2对应的uw, H和uw, 1根据增量型阻抗匹配法计算得到。图 5中同时给出了由LY12铝冲击加载-卸载粒子速度剖面计算得到的卸载过程拉格朗日纵波声速的结果[28]。从图中可以看到,再加载过程也呈现与卸载过程相同的准弹性行为特征,即弹、塑性波速为光滑过渡,而没有发生突降。如图中虚线所示,将卸载过程塑性段声速线性外延可得到再加载过程的拉格朗日体波声速cb。
在获得纵波和体波的基础上,根据J.R.Asay等[4]提出的自洽强度方法,对再加载过程的声速进行如下计算可得到剪应力的变化:
τc−τH=34ρ0∫u1uHc2L−c2bcLdu (2) 式中:uH和u1分别为图 5所示的Hugoniot状态对应的粒子速度和再加载进入塑性屈服时对应的粒子速度,ρ0为材料的初始密度,cL和cb分别为图 5所示的再加载过程对应的拉格朗日纵波和体波声速。由此计算得到的LY12铝的τc-τH结果见表 1。结合胡建波等[29]和俞宇颖等[21]分别给出的锡和锆基金属玻璃卸载过程声速数据,采用上述相同方法计算得到了锡和锆基金属玻璃再加载过程的τc-τH,计算结果见表 1。
在获得τc-τH的基础上,如能获得相同冲击压力下卸载过程的声速则可计算得到τc+τH,进而可以确定在该冲击压力下材料的屈服强度Y=(τc-τH)+(τc+τH)。由于冲击加载-再加载实验的困难,先前大量文献中将屈服强度Y ≈τc+τH,即认为再加载过程的τc-τH可以忽略。就LY12铝而言,本文再加载实验得到的38.3和48.5 GPa冲击压力下的τc-τH分别为0.73和0.77 GPa;胡建波等[10]通过卸载实验得到的32.2和54.7 GPa冲击压力下的τc+τH分别为0.85和1.05 GPa。显然,在上述压力范围内仅由冲击加载-卸载实验得到的LY12铝强度Y≈τc+τH将比实际结果Y=2τc降低约45%。对于锡,本文再加载实验得到的28.7和38.1 GPa冲击压力下的τc-τH分别为0.08和0.19 GPa;依据胡建波等[29]的卸载实验剖面数据计算得到的28.3和39.2 GPa冲击压力下的τc+τH分别为0.07和0.17 GPa。仅由冲击加载-卸载实验得到的锡强度Y≈τc+τH将比实际结果Y=2τc降低约50%。同样地,就锆基金属玻璃而言,本文再加载实验得到的39.1 GPa冲击压力下的τc-τH为0.53 GPa,俞宇颖等[21]通过卸载实验得到的37.3 GPa冲击压力下的τc+τH为1.73 GPa,仅由冲击加载-卸载实验得到的强度Y≈τc+τH将比实际结果Y=2τc降低约20%。综上所述,在采用自洽方法计算高压强度时冲击加载-再加载数据不可或缺。
3. 结论
针对自洽高压强度方法存在的因组合飞片分离而难以实现冲击加载-再加载的难题,提出了一种简便方法—采用较高硬度材料为支撑,通过环氧树脂与待测样品粘接制成组合飞片,由此减小气炮加载下飞片的弯曲变形来避免分离。采用该方法,在二级轻气炮上进行了冲击速度2.49~4.39 km/s、冲击压力28~48 GPa范围内铝、锡和锆基金属玻璃为样品的验证实验,5发实验均获得了较理想的冲击加载-再加载粒子速度剖面,表明了该方法的有效性。由本文获得的冲击加载-再加载粒子速度剖面,根据自洽方法计算得到了铝、锡和锆基金属玻璃再加载过程剪应力变化数据。结合已有的冲击加载-卸载过程剪应力变化数据的分析表明,在本文涉及的压力范围内,仅由冲击加载-卸载实验得到的铝、锡和锆基金属玻璃屈服强度将比实际结果降低约20%~50%。因此,在采用自洽方法计算高压强度时冲击加载-再加载数据不可或缺。
-
表 1 片状动态拉伸试样结构参数及其惯用值
Table 1. Structural parameters of the sheet specimen used for dynamic tensile tests and the reference values
lg/mm wg/mm lc/mm wc/mm R/mm δ/mm 12.0 4.0 18.0 16.0 3.0 2.0 表 2 试样结构参数正交表与模拟结果
Table 2. Orthogonal table of the specimen structural parameters and the simulation results
序号 结构参数/mm t/μs ˉσm/% s2/10−3 ˉDd/% lg wg lc wc R δ 01 6.0 2.0 16.0 14.0 0.5 1.0 18.05 4.55 2.241 0.57 02 6.0 3.0 17.0 15.0 1.0 1.5 18.50 6.11 2.176 3.54 03 6.0 4.0 18.0 16.0 2.0 2.0 19.00 5.90 1.776 7.23 04 6.0 5.0 19.0 17.0 3.0 2.5 18.00 5.76 1.874 11.44 05 6.0 6.0 20.0 18.0 4.0 3.0 19.50 6.17 1.412 15.58 06 8.0 2.0 18.0 17.0 1.0 3.0 18.50 2.94 1.930 2.01 07 8.0 3.0 19.0 18.0 2.0 1.0 19.50 2.59 0.865 4.83 08 8.0 4.0 20.0 14.0 3.0 1.5 20.00 3.33 0.765 8.47 09 8.0 5.0 16.0 15.0 4.0 2.0 20.00 4.29 0.753 12.17 10 8.0 6.0 17.0 16.0 0.5 2.5 21.01 8.42 4.844 1.90 11 10.0 2.0 20.0 15.0 2.0 2.5 22.00 1.68 0.807 3.73 12 10.0 3.0 16.0 16.0 3.0 3.0 22.00 2.63 0.651 6.54 13 10.0 4.0 17.0 17.0 4.0 1.0 23.12 1.91 0.414 9.65 14 10.0 5.0 18.0 18.0 0.5 1.5 21.99 6.32 3.203 1.19 15 10.0 6.0 19.0 14.0 1.0 2.0 21.00 6.88 2.925 2.34 16 12.0 2.0 17.0 18.0 3.0 2.0 23.50 1.39 0.357 5.17 17 12.0 3.0 18.0 14.0 4.0 2.5 24.00 1.99 0.316 8.14 18 12.0 4.0 19.0 15.0 0.5 3.0 21.32 5.21 1.972 1.06 19 12.0 5.0 20.0 16.0 1.0 1.0 21.99 4.58 1.852 1.70 20 12.0 6.0 16.0 17.0 2.0 2.0 23.00 4.46 1.651 4.18 21 14.0 2.0 19.0 16.0 4.0 1.5 26.00 0.94 0.146 6.99 22 14.0 3.0 20.0 17.0 0.5 2.0 24.51 3.53 1.295 0.74 23 14.0 4.0 16.0 18.0 1.0 2.5 25.11 3.93 1.205 1.77 24 14.0 5.0 17.0 14.0 2.0 3.0 25.03 3.95 0.805 4.00 25 14.0 6.0 18.0 15.0 3.0 1.0 25.50 3.39 0.750 5.18 表 3 模拟用材料模型参数
Table 3. Parameters of the material model used for simulations
材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 Johnson-Cook 模型参数 A/MPa B/MPa N C 45钢 7 850 210 0.30 AA7075-T6 2 800 71 0.33 473 210 0.3813 0.033 表 4 试样结构参数对测量精度指标影响的主次顺序及规律
Table 4. The influence order and law of the specimen structural parameters on the measurement accuracy indicators
指标 主次顺序 关键因素 规律 t lg, R, lc, δ, wg, wc lg、R lg、R与t呈正相关 s2 R, lg, wg, δ, wc, lc R、lg R、lg与s2呈负相关 ˉσm wg, R, lg, δ, wc, lc wg、R wg与ˉσm呈正相关,R与ˉσm呈负相关 ˉDd R, lg, wg, δ, lc, wc R、lg R与ˉDd呈正相关,lg与ˉDd呈负相关 表 5 验证集
Table 5. Validation data set
编号 结构参数/mm t/μs ˉσm/% s2/10–3 ˉDd/% lg wg lc wc R δ 01 6.0 3.0 18.0 15.0 2.0 1.5 16.0 4.45 1.018 7.02 02 8.0 2.0 16.0 14.0 3.0 1.0 18.5 1.24 0.275 7.59 03 10.0 4.0 19.0 17.0 1.0 2.5 21.0 5.43 1.946 2.34 表 6 验证集真实值与预测值的对比
Table 6. Comparison of the true and predicted values of the validation dataset
编号 t ˉσm s2 ˉDd 真实值/μs 预测值/μs 误差/% 真实值/% 预测值/% 误差/% 真实值/10–3 预测值/10–3 误差/% 真实值/% 预测值/% 误差/% 01 16.00 15.62 2.38 4.45 4.87 9.44 1.018 1.072 5.30 7.02 6.73 4.13 02 18.50 17.36 6.16 1.24 1.37 10.48 0.275 0.261 5.09 7.59 8.18 7.77 03 21.00 20.78 1.05 5.43 4.99 8.10 1.946 1.778 8.63 2.34 2.43 3.85 表 7 优化前后试样测量准确度指标对比
Table 7. Comparison of the measurement accuracy indicators of specimens before and after optimization
t ˉσm s2 ˉDd 优化前/μs 优化后/μs 减小/% 优化前/% 优化后/% 减小/% 优化前/10−3 优化后/10−3 减小/% 优化前/% 优化后/% 减小/% 27.0 21.0 22.2 2.4 1.57 34.6 0.871 0.803 7.8 5.57 5.16 7.9 -
[1] 蔡明, 陈伟, 陈利强, 等. TC8钛合金的动态力学性能及本构关系 [J]. 机械工程材料, 2020, 44(12): 80–84. DOI: 10.11973/jxgccl202012015.CAI M, CHEN W, CHEN L Q, et al. Dynamic mechanical properties and constitutive relation of TC8 titanium alloy [J]. Materials for Mechanical Engineering, 2020, 44(12): 80–84. DOI: 10.11973/jxgccl202012015. [2] 杨建兴, 张江涛, 乔炎亮, 等. 硅橡胶动态压缩性能SHPB测试方法及其本构模型研究 [J]. 高分子通报, 2021(4): 27–34. DOI: 10.14028/j.cnki.1003-3726.2021.04.004.YANG J X, ZHANG J T, QIAO Y L, et al. SHPB test method for the dynamic compressive properties and dynamic constitutive model of silicon rubber [J]. Polymer Bulletin, 2021(4): 27–34. DOI: 10.14028/j.cnki.1003-3726.2021.04.004. [3] FENG F, HUANG S Y, MENG Z H, et al. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state [J]. Materials Science and Engineering: A, 2014, 594: 334–343. DOI: 10.1016/j.msea.2013.11.008. [4] LIU Z, DONG Y, MAO P L, et al. Dynamic tensile and compressive properties of vacuum and ordinary die-casting AT72 magnesium alloy at high strain rates [J]. Journal of Magnesium and Alloys, 2013, 1(2): 150–162. DOI: 10.1016/j.jma.2013.07.004. [5] OGAWA K. Impact-tension compression test by using a split-Hopkinson bar [J]. Experimental Mechanics, 1984, 24(2): 81–86. DOI: 10.1007/BF02324987. [6] HARDING J, WOOD E O, CAMPBELL J D. Tensile testing of materials at impact rates of strain [J]. Journal of Mechanical Engineering Science, 1960, 2(2): 88–96. DOI: 10.1243/JMES_JOUR_1960_002_016_02. [7] HUH H, KANG W J, HAN S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals [J]. Experimental Mechanics, 2002, 42(1): 8–17. DOI: 10.1007/BF02411046. [8] VERLEYSEN P, DEGRIECK J, VERSTRAETE T, et al. Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials [J]. Experimental Mechanics, 2008, 48(5): 587–589. DOI: 10.1007/s11340-008-9149-x. [9] VERLEYSEN P, BENEDICT V, VERSTRAETE T, et al. Numerical study of the influence of the specimen geometry on split Hopkinson bar tensile test results [J]. Latin American Journal of Solids and Structures, 2009, 6(3): 285–298. DOI: 10.1007/s12205-009-0371-6. [10] XU W F, HUANG X C, HAO Z M, et al. Effect of the geometric shapes of specimens on impact tensile tests [J]. Journal of Zhejiang University: Science A, 2010, 11(10): 817–821. DOI: 10.1631/jzus.A1000139. [11] SUN X, SOULAMI A, CHOI K S, et al. Effects of sample geometry and loading rate on tensile ductility of TRIP800 steel [J]. Materials Science and Engineering: A, 2012, 541: 1–7. DOI: 10.1016/j.msea.2011.12.115. [12] ROTBAUM Y, RITTEL D. Is there an optimal gauge length for dynamic tensile specimens? [J]. Experimental Mechanics, 2014, 54(7): 1205–1214. DOI: 10.1007/s11340-014-9889-8. [13] PRABOWO D A, KARIEM M A, GUNAWAN L. The effect of specimen dimension on the results of the split-Hopkinson tension bar testing [J]. Procedia Engineering, 2017, 173: 608–614. DOI: 10.1016/j.proeng.2016.12.114. [14] NGUYEN K H, LEE C W, SHIN H, et al. A study on the effects of specimen geometry on measurement accuracy of dynamic constitutive properties of metals using SHTB [J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(9): 1687–1695. DOI: 10.1007/s12541-020-00368-y. [15] 郭伟国, 李玉龙, 索涛. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 131−132. [16] BAYRAMIN B, ŞIMŞIR C, EFE M. Dynamic strain aging in DP steels at forming relevant strain rates and temperatures [J]. Materials Science and Engineering: A, 2017, 704: 164–172. DOI: 10.1016/j.msea.2017.08.006. [17] JIANG B H, CAO L B, ZHU F. Dynamic tensile behavior of polypropylene with temperature effect [J]. Composites Part B: Engineering, 2018, 152: 300–304. DOI: 10.1016/j.compositesb.2018.08.133. [18] BARDELCIK A, SALISBURY C P, WINKLER S, et al. Effect of cooling rate on the high strain rate properties of boron steel [J]. International Journal of Impact Engineering, 2010, 37(6): 694–702. DOI: 10.1016/j.ijimpeng.2009.05.009. [19] SMERD R, WINKLER S, SALISBURY C, et al. High strain rate tensile testing of automotive aluminum alloy sheet [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 541–560. DOI: 10.1016/j.ijimpeng.2005.04.013. [20] 徐仲安, 王天保, 李常英, 等. 正交试验设计法简介 [J]. 科技情报开发与经济, 2002, 12(5): 148–150. DOI: 10.3969/j.issn.1005-6033.2002.05.084.XU Z A, WANG T B, LI C Y, et al. Brief introduction to the orthogonal test design [J]. Sci/Tech Information Development & Economy, 2002, 12(5): 148–150. DOI: 10.3969/j.issn.1005-6033.2002.05.084. [21] 陈建华, 周晨佳, 王雪, 等. 基于正交试验的高速井泵优化设计 [J]. 排灌机械工程学报, 2021, 39(5): 457–463. DOI: 10.3969/j.issn.1674-8530.19.0227.CHEN J H, ZHOU C J, WANG X, et al. Optimization design of high-speed well pump based on orthogonal experiment [J]. Journal of Drainage and Irrigation Machinery, 2021, 39(5): 457–463. DOI: 10.3969/j.issn.1674-8530.19.0227. [22] DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155–179. DOI: 10.1016/0022-5096(63)90050-4. [23] VERLEYSEN P, DEGRIECK J. Non-homogeneous and multi-axial stress distribution in concrete specimens during split Hopkinson tensile tests [J]. Computers & Structures, 2000, 77(6): 669–676. DOI: 10.1016/S0045-7949(00)00022-5. [24] SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials [J]. Experimental Mechanics, 2004, 44(3): 300–312. DOI: 10.1007/BF02427897. [25] ZHANG D N, SHANGGUAN Q Q, XIE C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy [J]. Journal of Alloys and Compounds, 2015, 619: 186–194. DOI: 10.1016/j.jallcom.2014.09.002. [26] 周玉珠. 正交试验设计的矩阵分析方法 [J]. 数学的实践与认识, 2009, 39(2): 202–207.ZHOU Y Z. A matrix analysis of orthogonal design [J]. Mathematics in Practice and Theory, 2009, 39(2): 202–207. [27] 何龙, 张冉阳, 赵刚要, 等. 基于BP神经网络的GH5188高温合金本构模型 [J]. 特种铸造及有色合金, 2021, 41(2): 223–226.HE L, ZHANG R Y, ZHAO G Y, et al. Constitutive model of GH5188 superalloy based on BP neural network [J]. Special Casting & Nonferrous Alloys, 2021, 41(2): 223–226. [28] NARAYANA P L, LEE S W, PARK C H, et al. Modeling high-temperature mechanical properties of austenitic stainless steels by neural networks [J]. Computational Materials Science, 2020, 179: 109617. DOI: 10.1016/j.commatsci.2020.109617. [29] 王小平, 曹立明. 遗传算法: 理论、应用与软件实现 [M]. 西安: 西安交通大学出版社, 2002: 1−15. 期刊类型引用(0)
其他类型引用(1)
-