惰性气体对C3H8可燃下极限的影响

陆毅 胡贤忠 张国栋

陆毅, 胡贤忠, 张国栋. 惰性气体对C3H8可燃下极限的影响[J]. 爆炸与冲击, 2022, 42(2): 025401. doi: 10.11883/bzycj-2021-0231
引用本文: 陆毅, 胡贤忠, 张国栋. 惰性气体对C3H8可燃下极限的影响[J]. 爆炸与冲击, 2022, 42(2): 025401. doi: 10.11883/bzycj-2021-0231
LU Yi, HU Xianzhong, ZHANG Guodong. The influence of inert gas on the lower flammability limit of propane[J]. Explosion And Shock Waves, 2022, 42(2): 025401. doi: 10.11883/bzycj-2021-0231
Citation: LU Yi, HU Xianzhong, ZHANG Guodong. The influence of inert gas on the lower flammability limit of propane[J]. Explosion And Shock Waves, 2022, 42(2): 025401. doi: 10.11883/bzycj-2021-0231

惰性气体对C3H8可燃下极限的影响

doi: 10.11883/bzycj-2021-0231
基金项目: 国家自然科学基金(51706037)
详细信息
    作者简介:

    陆 毅(1996- ),男,硕士研究生, luyieric@163.com

    通讯作者:

    胡贤忠(1984- ),男,博士,副教授, huxz@smm.neu.edu.cn

  • 中图分类号: O389; TK16

The influence of inert gas on the lower flammability limit of propane

  • 摘要: 为探究CO2、N2和Ar对C3H8可燃下极限的影响,在5 L爆炸容器中测定了C3H8在O2/CO2、O2/Ar、O2/N2三种气氛下的可燃下极限。首先分析了稀释气浓度、稀释气种类和氧气浓度对C3H8的可燃下极限的影响。结果表明,在O2/CO2气氛下,稀释气浓度变化对C3H8的可燃下极限影响最大,对O2/Ar的影响次之,对O2/N2的影响最小。在相同稀释气浓度条件下,CO2对C3H8可燃下极限的影响最大,N2的影响次之,Ar的影响最小。随着O2浓度的上升,O2/CO2气氛的可燃下极限出现较为明显的下降,O2/N2和O2/Ar的氛围的可燃下极限平缓上升。通过建立能量平衡方程分析了稀释气的比热和辐射效应对可燃下极限的影响。结果表明,混合气比热的改变是C3H8可燃下极限改变的主要原因,辐射热损失是影响可燃下极限的重要因素。
  • 图  1  实验装置

    Figure  1.  Experimental device

    图  2  火焰扩散过程

    Figure  2.  Flame diffusion process

    图  3  O2/稀释气气氛下稀释气体积分数对C3H8的LFL的影响

    Figure  3.  Influence of diluent volume fraction on LFL of C3H8 in the O2/diluent atmosphere

    图  4  O2/CO2气氛下O2体积分数对C3H8的LFL的影响

    Figure  4.  Influence of O2 volume fraction on LFL of C3H8 in the O2/CO2 atmosphere

    图  5  循环迭代过程流程图

    Figure  5.  Flow chart of the loop iteration process

    图  6  稀释气/O2气氛下LFL处λQt)、λQr)的变化

    Figure  6.  Variations of λ(Qt) and λ(Qr) at the LFL in the diluent/O2 atmosphere

    图  7  稀释气/O2气氛下LFL处火焰温度T的变化

    Figure  7.  Variation of the flame temperature T at the LFL in the diluent/O2 atmosphere

  • [1] ZHAO Y, LI H N, ZHANG S C, et al. Seismic analysis of a large LNG tank considering different site conditions [J]. Applied Sciences, 2020, 10(22): 8121. DOI: 10.3390/app10228121.
    [2] GOULD C F, URPELAINEN J. LPG as a clean cooking fuel: adoption, use, and impact in rural India [J]. Energy Policy, 2018, 122: 395–408. DOI: 10.1016/j.enpol.2018.07.042.
    [3] LOVACHEV L A. The theory of limits on flame propagation in gases [J]. Combustion and Flame, 1971, 17(3): 275–278. DOI: 10.1016/S0010-2180(71)80048-2.
    [4] FLACK J, BENNETT A J S, STRONG R, et al. Combution theory [M]. Menlo Park: Marine Combustion Practice, 1969: 126−140.
    [5] WAN X, ZHANG Q, SHEN S L. Theoretical estimation of the lower flammability limit of fuel-air mixtures at elevated temperatures and pressures [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 13–19. DOI: 10.1016/j.jlp.2015.05.001.
    [6] FENG B, YANG Z, LV Z J, et al. Effect of gas disturbance on combustion characteristics of flammable refrigerants near LFLs [J]. Journal of Hazardous Materials, 2019, 368: 21–32. DOI: 10.1016/j.jhazmat.2018.12.119.
    [7] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. On the temperature dependence of flammability limits of gases [J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 585–590. DOI: 10.1016/j.jhazmat.2011.01.037.
    [8] KIM N I, KATAOKA T, MARUYAMA S, et al. Flammability limits of stationary flames in tubes at low pressure [J]. Combustion and Flame, 2005, 141(1/2): 78–88. DOI: 10.1016/j.combustflame.2004.12.011.
    [9] CHEN J R, TSAI H Y, CHIEN J H, et al. Flow and flame visualization near the upper flammability limits of methane/air and propane/air mixtures at elevated pressures [J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5): 662–670. DOI: 10.1016/j.jlp.2011.05.012.
    [10] LUO Z M, SU B, WANG T, et al. Effects of propane on the flammability limits and chemical kinetics of methane–air explosions [J]. Combustion Science and Technology, 2020, 192(9): 1785–1801. DOI: 10.1080/00102202.2019.1625041.
    [11] MENDIBURU A Z, DE CARVALHO J A JR, CORONADO C R. Method for determination of flammability limits of gaseous compounds diluted with N2 and CO2 in air [J]. Fuel, 2018, 226: 65–80. DOI: 10.1016/j.fuel.2018.03.181.
    [12] BLINT R J. Flammability limits for exhaust gas diluted flames [J]. Symposium (International) on Combustion, 1989, 22(1): 1547–1554. DOI: 10.1016/S0082-0784(89)80165-1.
    [13] BUHRE B J P, ELLIOTT L K, SHENG C D, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in Energy and Combustion Science, 2005, 31(4): 283–307. DOI: 10.1016/j.pecs.2005.07.001.
    [14] FEDYAEVA O N, ARTAMONOV D O, VOSTRIKOV A A. Effect of H2O and CO2 on propane, propene, and isopropanol oxidation at elevated pressures [J]. Combustion and Flame, 2019, 199: 230–240. DOI: 10.1016/j.combustflame.2018.09.031.
    [15] GIURCAN V, MITU M, MOVILEANU C, et al. Influence of inert additives on small-scale closed vessel explosions of propane-air mixtures [J]. Fire Safety Journal, 2020, 111: 102939. DOI: 10.1016/j.firesaf.2019.102939.
    [16] PEKALSKI A A, ZEVENBERGEN J F, LEMKOWITZ S M, et al. A review of explosion prevention and protection systems suitable as ultimate layer of protection in chemical process installations [J]. Process Safety and Environmental Protection, 2005, 83(1): 1–17. DOI: 10.1205/psep.04023.
    [17] LI Y C, BI M S, HUANG L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96–104. DOI: 10.1016/j.fuproc.2018.08.015.
    [18] HU X Z, XIE Q H, YU Q B, et al. Effect of carbon dioxide on the lower flammability limit of propane in O2/CO2 atmosphere [J]. Energy & Fuels, 2020, 34(4): 4993–4998. DOI: 10.1021/acs.energyfuels.0c00601.
    [19] HU X Z, XIE Q H, ZHANG J, et al. Experimental study of the lower flammability limits of H2/O2/CO2 mixture [J]. International Journal of Hydrogen Energy, 2020, 45(51): 27837–27845. DOI: 10.1016/j.ijhydene.2020.07.033.
    [20] PIO G, SALZANO E. The effect of ultra-low temperature on the flammability limits of a methane/air/diluent mixtures [J]. Journal of Hazardous Materials, 2019, 362: 224–229. DOI: 10.1016/j.jhazmat.2018.09.018.
    [21] HU X Z, YU Q B, SUN N, et al. Effects of high concentrations of CO2 on the lower flammability limits of oxy-methane mixtures [J]. Energy & Fuels, 2016, 30(5): 4346–4352. DOI: 10.1021/acs.energyfuels.6b00492.
    [22] HU S T, WANG P Y, PITZ R W, et al. Experimental and numerical investigation of non-premixed tubular flames [J]. Proceedings of the Combustion Institute, 2007, 31(1): 1093–1099. DOI: 10.1016/j.proci.2006.08.058.
    [23] YAWS C L. Matheson气体数据手册 [M]. 7版. 陶鹏万, 黄建彬, 朱大方, 译. 北京: 化学工业出版社, 2001: 27−230.
    [24] 张家荣, 赵廷元. 工程常用物质的热物理性质手册 [M]. 北京: 新时代出版社, 1987: 256-301.
    [25] KANGWANPONGPAN T, FRANCA F H R, DA SILVA R C, et al. New correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on HITEMP 2010 database [J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7419–7433. DOI: 10.1016/j.ijheatmasstransfer.2012.07.032.
    [26] HU X Z, YU Q B, SUN Y S. Effects of carbon dioxide on the upper flammability limits of methane in O2/CO2 atmosphere [J]. Energy, 2020, 208: 118417. DOI: 10.1016/j.energy.2020.118417.
  • 加载中
图(7)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  237
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-13
  • 网络出版日期:  2022-01-13
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回