装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究

程月华 吴昊 谭可可 姜鹏飞 张动 方秦

程月华, 吴昊, 谭可可, 姜鹏飞, 张动, 方秦. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究[J]. 爆炸与冲击, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278
引用本文: 程月华, 吴昊, 谭可可, 姜鹏飞, 张动, 方秦. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究[J]. 爆炸与冲击, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278
CHENG Yuehua, WU Hao, TAN Keke, JIANG Pengfei, ZHANG Dong, FANG Qin. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion And Shock Waves, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278
Citation: CHENG Yuehua, WU Hao, TAN Keke, JIANG Pengfei, ZHANG Dong, FANG Qin. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion And Shock Waves, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278

装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究

doi: 10.11883/bzycj-2021-0278
基金项目: 国家自然科学基金(52078379)
详细信息
    作者简介:

    程月华(1994- ),女,博士研究生,yhcheng@tongji.edu.cn

    通讯作者:

    吴 昊(1981- ),男,博士,教授,wuhaocivil@tongji.edu.cn

  • 中图分类号: O385

Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets

  • 摘要: 装甲钢/超高性能混凝土(UHPC)复合防护结构在重点工程中抵抗弹体的高速侵彻作用具有广泛的应用前景。为评估该复合结构的抗侵彻性能,对两种复合靶体开展侵彻试验与数值模拟研究。首先,开展了12发30 mm口径30CrMnSiNi2A弹体372~646 m/s速度侵彻复合靶试验。随后通过一系列静动态力学性能试验标定装甲钢材料的本构模型参数,并建立三维有限元模型对上述试验开展数值模拟分析。通过对比试验和数值模拟得到的弹体侵彻深度、残余弹体长度和装甲钢板的失效模式,验证了装甲钢本构模型参数的可靠性。进一步基于弹道效益系数对复合靶抗侵彻性能进行了定量评估。最后,确定了不同装甲钢板厚度复合靶体的临界贯穿速度,并对弹体侵彻复合靶的弹、靶失效模式进行了讨论。
  • 图  1  30 mm口径30CrMnSiNi2A弹体

    Figure  1.  A 30 mm-caliber 30CrMnSiNi2A projectile

    图  2  装甲钢/UHPC复合靶

    Figure  2.  An armor steel/UHPC composite target

    图  3  单轴压缩试验

    Figure  3.  Axial compressive strength test

    图  4  侵彻试验现场布置

    Figure  4.  Projectile penetration test setup

    图  5  典型弹体冲击图像

    Figure  5.  Typical projectile impacting photographs

    图  6  弹体、装甲钢和UHPC靶体损伤

    Figure  6.  Damage of projectiles, armor steel plates and UHPC targets

    图  7  未发射弹体与回收弹体对比图

    Figure  7.  Photographs of unfired and recovered projectiles

    图  8  冲击速度(v0)对侵彻深度(h)的影响

    Figure  8.  Influence of striking velocity (v0) on penetration depth (h)

    图  9  有限元模型

    Figure  9.  Finite element model

    图  10  室温单轴拉伸真实应力-应变曲线

    Figure  10.  Uniaxial tensile true stress-strain curves at room temperature

    图  11  不同应变率下试件的真实应力-应变曲线

    Figure  11.  True stress-strain curves of specimens at different strain rates

    图  12  动态屈服强度试验数据与拟合曲线

    Figure  12.  Dynamic yield strength test data and fitting curves

    图  13  不同缺口半径试件拉伸试验

    Figure  13.  Notched specimens tensile test with various notch radii

    图  14  缺口试件拉伸试验数据与拟合曲线

    Figure  14.  Notched specimens tensile test data and fitting curves

    图  15  屈服面方程

    Figure  15.  Equation of yield surface

    图  16  状态方程

    Figure  16.  Equation of state

    图  17  损伤模型

    Figure  17.  Damage model

    图  18  弹体侵彻能量时程曲线

    Figure  18.  Energy time-histories of projectile penetration

    图  19  复合靶的典型损伤过程

    Figure  19.  Typical damage evolutions of composite targets

    图  20  弹体速度时程曲线

    Figure  20.  Velocity-time histories of projectiles

    图  21  NP450复合靶中弹体和靶体损伤

    Figure  21.  Damaged projectiles and targets in NP450/UHPC composite targets

    图  22  NP500/UHPC复合靶中弹体和靶体损伤

    Figure  22.  Damaged projectiles and targets in NP500/UHPC composite targets

    图  23  NP450_10mm复合靶中残余弹体长度与装甲钢损伤对比

    Figure  23.  Comparisons of residual projectile and damaged armor steel for NP450_10mm composite target

    图  24  NP500_5 mm复合靶中残余弹体长度与UHPC中侵彻深度对比

    Figure  24.  Comparisons of residual projectile and penetration depth in UHPC for NP500_5 mm composite target

    图  25  不同厚度装甲钢板的临界贯穿速度和弹头损伤云图

    Figure  25.  Critical perforation velocitiy and damage contours of projectile nose versus armor steel plate thickness

    图  26  不同弹体冲击速度下复合靶体的破坏

    Figure  26.  Damage of composite targets subjected to different projectile striking velocities

    图  27  不同冲击速度下6 mm厚NP450钢板和弹体的损伤过程

    Figure  27.  Failure process of the projectile and 6-mm-thickness NP450 armor steel plate at different striking velocities

    图  28  不同冲击速度下6 mm厚NP500钢板和弹体的损伤过程

    Figure  28.  Failure process of the projectile and 6 mm thickness NP500 armor steel plate with different striking velocities

    表  1  NP450和NP500装甲钢各组分的质量分数(%)

    Table  1.   The mass fraction (%) of each composition of NP450 and NP500 armor steels

    钢材CSiMnPSAltTiNiCrMoBCeq
    NP4500.200.511.290.010.0080.0410.020.020.660.150.00180.58
    NP5000.280.640.740.0050.0010.0340.0150.690.240.420.00160.60
    注:Alt为全铝含量;Ceq代表carbon equivalent,即钢铁中各种合金元素折算成碳的含量。
    下载: 导出CSV

    表  2  UHPC配合比(kg/m3

    Table  2.   Mixture proportions of UHPC (kg/m3)

    水泥硅灰降粘性掺合料河沙高效减水剂钢纤维掺量
    700140110120015222.8156
    下载: 导出CSV

    表  3  钢纤维材料性能

    Table  3.   Material properties of steel fiber

    钢纤维长度/mm直径/mm长径比密度/(kg·m-3)抗拉强度/MPa弹性模量/GPa
    微细平直型130.26578002800210
    下载: 导出CSV

    表  4  试验数据

    Table  4.   Test data

    试验编号v0/(m·s−1)Lr/mmMr/gh/mmρA/(kg·m−2)d1/mmd2/mmd3/mmd4/mmdc/mmHc/mmAc/cm2
    NP450_5 mm474168673126345.425027526025025985493
    NP450_5 mm581165682159428.926025524026525587515
    NP450_5 mm639169680175469.4210250245230234125419
    NP450_8 mm481**32123.511512512512012124478
    NP450_10 mm399135495755.0
    NP450_13 mm394144588323.6
    NP500_5 mm48415566881231.516017020518017976248
    NP500_5 mm584160676130355.522029028027026582478
    NP500_5 mm646162675166446.621019020018019596285
    NP500_8 mm643**71222.219025525020522563378
    NP500_10 mm422129476431.4
    NP500_13 mm37213452017.9
    注:“*”代表弹体在试验中破碎,未能得到弹体残余长度和质量,“–”表示钢板未被贯穿,可忽略UHPC靶的损伤。
    下载: 导出CSV

    表  5  缺口试件拉伸试验结果

    Table  5.   Tensile results of notched specimens

    R/mmη0Df/mmεf
    NP450NP500 NP450NP500 NP450计算NP450平均NP500计算NP500平均
    30.9390.939 6.216.99 0.9330.9360.7320.746
    6.367.000.9720.729
     6.286.840.9040.776
    60.6820.682 5.846.12 1.1041.0751.0060.943
    5.986.621.0400.849
    5.926.22 1.0820.974
    90.5620.562 5.065.841.4021.2301.1001.099
    5.965.841.1101.096
     5.766.121.1781.100
    0.3330.3334.584.89 1.5621.5751.4331.418
    4.564.991.5691.392
     4.524.89 1.5901.430
    下载: 导出CSV

    表  6  弹体和装甲钢J-C本构模型强度参数

    Table  6.   J-C model strength parameters of projectile and armor steels

    钢材As/MPaBs/MPanCsm ${\dot{\varepsilon } }_{0}$/s−1
    30CrMnSiNi2A12698100.47900.041.01×10−3
    NP450123016470.49850.131.01×10−3
    NP500137023190.44350.03681.01×10−3
    下载: 导出CSV

    表  7  弹体和装甲钢J-C本构模型损伤参数

    Table  7.   J-C model damage parameters of projectile and armor steels

    钢材D1D2D3D4D5
    30CrMnSiNi2A0.2398.593−7.8670.0090
    NP4500.6961.827−2.18400
    NP5000.3581.844−1.65700
    下载: 导出CSV

    表  8  材料的状态方程参数

    Table  8.   Material's parameters of state equation

    c0/(m·s−1)s1s2s3γ0a
    45781.33001.670.43
    下载: 导出CSV

    表  9  UHPC的HJC模型参数

    Table  9.   HJC model parameters of UHPC

    ρ0/(kg·m−3)AuBuNCuSmax
    25300.31.730.790.0057
    K1/GPaK2/GPaK3/GPaplock/GPaD1D2εf,min
    116-2435063.470.0410.01
    下载: 导出CSV

    表  10  弹道特性结果

    Table  10.   Ballistic characterization results

    试验编号v0/(m·s−1)h0/mmh/mmEtEmq2
    NP450_5mm474168.01219.403.0328.48
    NP450_5mm581189.41547.082.2816.14
    NP450_5mm639218.11709.623.1029.82
    NP450_8mm481170.12418.265.88107.37
    NP450_10mm399146.7514.174.5664.62
    NP450_13mm394144.6210.973.5338.72
    NP500_5mm484170.77618.946.10115.53
    NP500_5mm584192.512513.504.3558.73
    NP500_5mm646221.716112.143.9147.47
    NP500_8mm643221.16319.766.36125.67
    NP500_10mm422158.4315.545.0077.70
    NP500_13mm372139.51.510.623.4236.32
    下载: 导出CSV
  • [1] SILSBY G F. Penetration of semi-infinite steel targets by tungsten rods at 1.3 to 4.5 km/s [C]// Proceeding of the 8th International Symposium on Ballistics. Orlando, USA: International Ballistics Society, 1984.
    [2] FRAS T, ROTH C C, MOHR D. Fracture of high-strength armor steel under impact loading [J]. International Journal of Impact Engineering, 2018, 111: 147–164. DOI: 10.1016/j.ijimpeng.2017.09.009.
    [3] FRAS T, ROTH C C, MOHR D. Dynamic perforation of ultra-hard high-strength armor steel: impact experiments and modeling [J]. International Journal of Impact Engineering, 2019, 131: 256–271. DOI: 10.1016/j.ijimpeng.2019.05.008.
    [4] CHOUDHARY S, SINGH P K, KHARE S, et al. Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study [J]. International Journal of Impact Engineering, 2020, 140: 103557. DOI: 10.1016/j.ijimpeng.2020.103557.
    [5] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [6] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [7] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [8] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
    [9] SOVJÁK R, VAVŘINÍK T, MÁCA P, et al. Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact [J]. Procedia Engineering, 2013, 65: 120–125. DOI: 10.1016/j.proeng.2013.09.021.
    [10] SOVJÁK R, VAVŘINÍ T, ZATLOUKAL J, et al. Resistance of slim UHPFRC targets to projectile impact using in-service bullets [J]. International Journal of Impact Engineering, 2015, 76: 166–177. DOI: 10.1016/j.ijimpeng.2014.10.002.
    [11] MÁCA P, SOVJÁK R, KONVALINKA P. Mix design of UHPFRC and its response to projectile impact [J]. International Journal of Impact Engineering, 2014, 63: 158–163. DOI: 10.1016/j.ijimpeng.2013.08.003.
    [12] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [13] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [14] LIU J, WU C Q, LI J, et al. Ceramic balls protected ultra-high performance concrete structure against projectile impact: a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 143–162. DOI: 10.1016/j.ijimpeng.2018.11.006.
    [15] SHAO R Z, WU C Q, SU Y, et al. Experimental and numerical investigations of penetration resistance of ultra-high strength concrete protected with ceramic balls subjected to projectile impact [J]. Ceramics International, 2019, 45(6): 7961–7975. DOI: 10.1016/j.ceramint.2019.01.110.
    [16] FENG J, SUN W W, LIU Z L, et al. An armour-piercing projectile penetration in a double-layered target of ultra-high-performance fiber reinforced concrete and armour steel: Experimental and numerical analyses [J]. Materials & Design, 2016, 102: 131–141. DOI: 10.1016/j.matdes.2016.04.021.
    [17] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardness [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [18] 中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002 [S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction, People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002 [S]. Beijing: China Architecture & Building Press, 2003.
    [19] ZHAI Y X, WU H, FANG Q. Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles [J]. International Journal of Impact Engineering, 2021, 154: 103888. DOI: 10.1016/j.ijimpeng.2021.103888.
    [20] Livermore Software Technology Corporation. LS-DYNA keywords user’s manual [M]. Livermore: Livermore Software Technology Corporation, 2001.
    [21] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]// Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983: 541-547.
    [22] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2010 [S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials-tensile testing-Part 1: method of test at room temperature: GB/T 228.1—2010 [S]. Beijing: Standards Press of China, 2010.
    [24] DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8/9): 1005–1038. DOI: 10.1016/j.ijimpeng.2004.06.004.
    [25] BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
    [26] BØRVIK T. DEY S, CLAUSEN A H. A preliminary study on the perforation resistance of high-strength steel plates [J]. Journal de Physique IV, 2006, 134: 1053–1059. DOI: 10.1051/jp4:2006134161.
    [27] STEINBERG D J. Equation of state and strength properties of selected materials: UCRL-MA-106439 [R]. Livermore: Lawrence Livermore National Laboratory, 1996.
    [28] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. DOI: 10.1115/1.4004326.
    [29] REN G M, WU H, FANG Q, et al. Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact [J]. International Journal of Protective Structures, 2017, 8(3): 352–367. DOI: 10.1177/2041419617721552.
    [30] WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040.
    [31] LIU F, FENG W H, XIONG Z, et al. Impact performance of new prestressed high-performance concrete pipe piles manufactured with an environmentally friendly technique [J]. Journal of Cleaner Production, 2019, 231: 683–697. DOI: 10.1016/j.jclepro.2019.05.241.
    [32] CAO Y Y Y, YU Q L, TANG W H, et al. Numerical investigation on ballistic performance of coarse-aggregated layered UHPFRC [J]. Construction and Building Materials, 2020, 250: 118867. DOI: 10.1016/j.conbuildmat.2020.118867.
    [33] GOOCH W A, BURKINS M S, PALICKA J J. Ballistic development of U.S. high density tungsten carbide ceramics [C]// International Conference on Advanced Ceramics and Glasses. Hawaii, 2001: 53–61.
    [34] MADHU V, RAMANJANEYULU K, BHAT T B, et al. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 337–350. DOI: 10.1016/j.ijimpeng.2005.03.004.
    [35] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part II: numerical simulations [J]. International Journal of Impact Engineering, 2002, 27(1): 37–64. DOI: 10.1016/S0734-743X(01)00035-5.
    [36] WANG Y P, CHEN X Z, XIAO X K, et al. Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2020, 139: 103498. DOI: 10.1016/j.ijimpeng.2019.103498.
  • 加载中
图(28) / 表(10)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  430
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-09-10
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回